

High Speed Option Users Guide

Copyright Notice

Copyright © WestDev Ltd. 2001-2018 Pulsonix is a Trademark of WestDev Ltd. All rights reserved. E&OE

Copyright in the whole and every part of this software and manual belongs to WestDev Ltd. and may not be used, sold, transferred, copied or reproduced in whole or in part in any manner or in any media to any person, without the prior written consent of WestDev Ltd. If you use this manual you do so at your own risk and on the understanding that neither WestDev Ltd. nor associated companies shall be liable for any loss or damage of any kind.

WestDev Ltd. does not warrant that the software package will function properly in every hardware software environment.

Although WestDev Ltd. has tested the software and reviewed the documentation, WestDev Ltd. makes no warranty or representation, either express or implied, with respect to this software or documentation, their quality, performance, merchantability, or fitness for a particular purpose. This software and documentation are licensed 'as is', and you the licensee, by making use thereof, are assuming the entire risk as to their quality and performance.

In no event will WestDev Ltd. be liable for direct, indirect, special, incidental, or consequential damage arising out of the use or inability to use the software or documentation, even if advised of the possibility of such damages.

WestDev Ltd. reserves the right to alter, modify, correct and upgrade our software programs and publications without notice and without incurring liability.

Microsoft, Windows, Windows NT and Intellimouse are either registered trademarks or trademarks of Microsoft Corporation.

All other trademarks are acknowledged to their respective owners.

Pulsonix, a division of WestDev Ltd.

Printed in the UK.

Issue date: 22/05/18 Pulsonix iss 8

Pulsonix 20 Miller Court Severn Drive Tewkesbury Business Park Tewkesbury Glos, GL20 8DN United Kingdom

+44 (0)1684 296 570
+44 (0)1684 296 515
info@pulsonix.com
www.pulsonix.com

Contents

CONTENTS	3
CHAPTER 1. INTERACTIVE HIGH SPEED ROUTING	5
Technology File and Rules Management	5
Rules & Attribute Windows	5
Import & Exporting Rules	6
Rules Spreadsheet	. 10
Nets and Rules in the High Speed Option	. 15
Nets Items	. 15
Rules	. 16
Creating and applying Rules	. 17
Wildcard Wizard	. 19
Signal Paths	. 20
What is a Signal Path?	. 20
Creating Signal Paths	
Interactively Creating Signal Paths	24
Sub Nets	. 24
Overview	. 24
Creating Sub Nets	. 25
Connect In Pin Order	27
Interactively Creating Sub Nets	
Branch Points Overview	
Differential Pair Routing	. 31
Overview of Differential Pairs	. 31
Defining Differential Pairs	. 32
Differential Pair Attributes	. 33
Differential Pair Gap	. 33
Differential Pair Skew	
Pair to Pair Match Lengths	34
Defining Differential Pair Track Styles	. 35
Using Edge Coupled or Broadside Differential Pairs	35
Routing a Differential Pair	. 38
Changing Differential Pair Layers	.41
Alternative method for starting Differential Pair Routing	.42
Differential Pair Routing Functionality	.43
Acid trap removal using Minimum Allowed Gap Spacing Rule	.44
Defining Differential Pair Colours	.45
Differential Pair Chains	.45
Why Diff Dair Chains.	.47
Wily Dill Fall Challis :	.47
Interactive Net Length Indicators	.49
Ontions to Display Track Length Indicators	.49
Options to Display Track Length Indicators	.49
Track Length Match Rule	54
Laver Change Length Rule	56
Extra Lenoth Rule through Pin Package Attribute	56
Track Parallel Segments Rule	57
Necked Length Rule	.58

Serpentine Routing	
Fixed Rule Serpentine Routing	
Dynamic Serpentine Routing	
Differential Pair Routing – Fillet Mode	
Mirror Differential Pair routing from Angled Components	
Serpentine Skew Modes on Differential Pairs	
DRC Checks for High Speed Rules	
Reporting High Speed Rules and Results	
Standard Reports	
Custom Reports Using Report Maker	
Interactive Bus Routing.	
Cut Track	
RF Design Features	
Square-ended Tracks	
Chamfered Corners on Tracks	
Spiral Tracks and Shapes	
	79
	•

Chapter 1. Interactive High Speed Routing

Technology File and Rules Management

All rules for definition and management of the Interactive High Speed option are available within the Technology file under their respective rules headings. Each page enables you to set constraints and rules for each feature.

Rules & Attribute Windows

To introduce general functionality used throughout, the **Rules** and **Attributes** window is discussed below.

For each **Net** item page in the Technology that supports rules and attributes there is a tab for each rules type (**Rules** or **Attributes**).

Rules

This page will display all the rules associated with the selected net. Not only does it display the rule, but rules can be added, edited and deleted here too.

Rules	Attributes	
-		
Track	Length Rules: <net class="" name="">=5ignal [Min: 2.54000_Max: 17.78000] Match Rules: None</net>	<u>∧</u> <u>A</u> dd
Net S	,	c <u>E</u> dit
Coppe Layer Neck	 Pour Rules: <net class="" name="">=* [Min Island: 1.61290 'Remove Isolated Islands'] Change Length Rules: None d Length Rules: None</net>	Delete
Serpe Tearr	tine Rules: <net class="" name="">=* [Amplitude Min; 3.17500 Max; 6.35000 Separation; 0.6350 on Rules: <net class="" name="">=* [Shane: 'Triangle' V-Angle: 60.0 Apply To: 'TH SM V/A MV/A ></net></net>	· •

Add – this button is used to add a new rule for the selected rule item. By default, a new rule is created for <Net Name> and matching the net name selected, this is ready to add rule values to. The default net name rule is can be changed to your own criteria if required. If you press Add where the rule exists, it will edit the rule ready for a further edit.

Edit – for a selected Net item, where the rule is defined, it can be edited in its appropriate rules page. This button is greyed out if the rule doesn't exist.

Delete – use this to delete a selected rule. However, special conditions apply if the rule applies to more than one net item, the rule cannot be deleted. For example, if the rule is specific to <Net Name> CLK, then it can be deleted. If the rule applies to CL*, then it could belong to CLK and CLK1, in which case it cannot be deleted. The rule can be deleted of course from its own rule dialog.

Attributes

Net Attributes can be attached to a net. Rules can then be associated with that attribute. You might use an Attribute rule to attach to Nets that don't meet possible selection criteria. For example, a collection of nets that have different Net Names or different Net Classes but which still need **Track Length Matching** or a particular **Net Style** applied to them.

As with the **Rules** pane, there are buttons for **Adding**, **Editing** and **Deleting Net Attributes**. When adding an attribute here, if it is new to the design, it will be confirmed as being added to the **Attributes** dialog as well. This will be added as a Net Attribute for use on nets.

Once the attribute name has been added to the net, you must then create an appropriate rule for it to use. You may assign more than one Net to use this attribute. You may also assign more than one rule to an attribute so care should be taken if doing this.

Import & Exporting Rules

Within the **Technology** dialog, the **Export CSV** and **Import CSV** options are available on dialogs for **DFM/DFT rules** and **High Speed rules**. This means rules can be created externally using Excel for example, and imported into Pulsonix. Export of rules allows templates for each rule set to be exported before modification and import.

Rules - High Speed Differential Pair Gap Differential Pair Skew	Rules - High Speed Differential Pair Gap Differential Pair Skew	
Save Technology Load Tech	nology.	Export CSV Import CSV

These operate for each page and each set of rules. Each set of rules has its own column and row formatting to accommodate rules and functionality. You cannot combine CSV files for different sets of rules in the same design, you can however use the CSV file containing rules on different designs.

Exporting to CSV format

When the **Export CSV** button is pressed, the following dialog is displayed, this example shows the dialog for the Track Parallel Segment Rules:

SV Format:					
Field separation character: 💭 🔲 Use tab	Units for rule values: thou 🗸 Use Design Un	its			
	Decimal point character:				
Include Table Title: Track Parallel Segments Rules	~				
Map Rule Table Columns:					
Rule Column Name	CSV Column Name				
Check Segments On Attribute Name	Check Segments On Attribute Name				
Check Segments On Match Value	Check Segments On Match Value				
Check Segments On Side	Check Segments On Side				
	Check Segments On Layer				
Check Segments On Layer					
Check Segments On Layer Check Segments On Area	Check Segments On Area				
Check Segments On Layer Check Segments On Area Against Parallel Segments On Attribute Name	Check Segments On Area Against Parallel Segments On Attribute Name				
Check Segments On Layer Check Segments On Area Against Parallel Segments On Attribute Name Against Parallel Segments On Match Value	Check Segments On Area Against Parallel Segments On Attribute Name Against Parallel Segments On Match Value				
Check Segments Un Layer Check Segments On Area Against Parallel Segments On Attribute Name Against Parallel Segments On Match Value Parallel Track Segments Between Adjacent Layers	Check Segments On Area Against Parallel Segments On Attribute Name Against Parallel Segments On Match Value Parallel Track Segments Between Adjacent Layers				
Check Segments Un Layer Check Segments On Area Against Parallel Segments On Attribute Name Against Parallel Segments On Match Value Parallel Track Segments Between Adjacent Layers Parallel Track Segments Min Gap Between	Check Segments On Area Against Parallel Segments On Attribute Name Against Parallel Segments On Match Value Parallel Track Segments Between Adjacent Layers Parallel Track Segments Min Gap Between				
Check Segments Un Layer Check Segments On Area Against Parallel Segments On Attribute Name Against Parallel Segments On Match Value Parallel Track Segments Between Adjacent Layers Parallel Track Segments Min Gap Between Parallel Track Segments Max Parallel Length	Check Segments On Area Against Parallel Segments On Attribute Name Against Parallel Segments On Match Value Parallel Track Segments Between Adjacent Layers Parallel Track Segments Min Gap Between Parallel Track Segments Max Parallel Length				
Check Segments Un Layer Check Segments On Area Against Parallel Segments On Attribute Name Against Parallel Segments On Match Value Parallel Track Segments Between Adjacent Layers Parallel Track Segments Min Gap Between Parallel Track Segments Max Parallel Length	Check Segments On Area Against Parallel Segments On Attribute Name Against Parallel Segments On Match Value Parallel Track Segments Between Adjacent Layers Parallel Track Segments Min Gap Between Parallel Track Segments Max Parallel Length				
Check Segments Un Layer Check Segments On Area Against Parallel Segments On Attribute Name Against Parallel Segments On Match Value Parallel Track Segments Min Gap Between Parallel Track Segments Min Gap Between Parallel Track Segments Max Parallel Length	Check Segments On Area Against Parallel Segments On Attribute Name Against Parallel Segments On Match Value Parallel Track Segments Between Adjacent Layers Parallel Track Segments Min Gap Between Parallel Track Segments Max Parallel Length				

Headers for each type of CSV file are the same but Table Columns change for each one.

CSV Format – the contents under this header allow you to format the CSV file so that regional variations on the data format can be used.

Include Table Title – this is used if you wish to include a title as the first line in the CSV file. You might wish to do this to identify the rule being exported or the design name for example. By default it will display the name of the rule but you can type over this to enter your own title.

Map Rule Table Columns – this allows you to map the rule name being exported into the CSV file using either default column names provided or your own typed column names. These names appear in the CSV file, it may be that you wish to use shorter or abbreviated names or names in your local language.

Importing CSV format files

When the **Import CSV** file button is pressed, you are presented with a standard **Open** dialog from which to choose the file for import:

Once the file has been read, you are presented with an **Import CSV** dialog. From here, you can inform the program on how the CSV file has been **formatted**, whether it uses a **Title** header or not and the ability to map the incoming **Columns** names against the ones expected in the **Technology** dialog.

SV Format:		
Field separation character: 🔎 🗌 Use tab	Units for rule values: thou 🔽 Use Design Un Decimal point character:	its
nd Rule Table Using: () Title: Track Parallel Segments Rules		
O Position: row. 1 column: A		
CSV Column Name	Rule Column Name	
Ohandi Ohannada Oha Attalia da Nama		
Check Segments On Attribute Name	Check Segments On Attribute Name	
Check Segments On Attribute Name Check Segments On Match Value	Check Segments On Attribute Name Check Segments On Match Value	
Check Segments On Attribute Name Check Segments On Match Value Check Segments On Side	Check Segments On Attribute Name Check Segments On Match Value Check Segments On Side	
Check Segments On Attribute Name Check Segments On Natch Value Check Segments On Side Check Segments On Layer	Check Segments On Attribute Name Check Segments On Match Value Check Segments On Side Check Segments On Layer	
Check Segments On Attribute Name Check Segments On Match Value Check Segments On Layer Check Segments On Layer Check Segments On Area	Check Segments On Attribute Name Check Segments On Match Value Check Segments On Side Check Segments On Layer Check Segments On Area	
Check segments Un Attroute Name Check Segments On Match Value Check Segments On Side Check Segments On Layer Check Segments On Area Against Parallel Segments On Attribute Name	Check Segments On Attribute Name Check Segments On Match Value Check Segments On Side Check Segments On Layer Check Segments On Area Against Parallel Segments On Attribute Name	
Check Segments On Attroute Name Check Segments On Match Value Check Segments On Layer Check Segments On Layer Check Segments On Area Against Parallel Segments On Attribute Name Against Parallel Segments On Match Value	Check Segments On Attribute Name Check Segments On Match Value Check Segments On Layer Check Segments On Layer Check Segments On Area Against Parallel Segments On Attribute Name Against Parallel Segments On Match Value	
Check Segments On Attrobute Name Check Segments On Match Value Check Segments On Layer Check Segments On Layer Check Segments On Area Against Parallel Segments On Attribute Name Against Parallel Segments On Match Value Parallel Track Segments Between Adjacent Layers	Check Segments On Attribute Name Check Segments On Match Value Check Segments On Side Check Segments On Layer Check Segments On Area Against Parallel Segments On Attribute Name Against Parallel Segments On Match Value Parallel Track Segments Between Adjacent Layers	
Check Segments On Attroute Name Check Segments On Match Value Check Segments On Layer Check Segments On Layer Check Segments On Area Against Parallel Segments On Match Value Parallel Track Segments Between Adjacent Layers Parallel Track Segments Min Gap Between	Check Segments On Attribute Name Check Segments On Match Value Check Segments On Side Check Segments On Layer Check Segments On Area Against Paralel Segments On Attribute Name Against Paralel Segments On Match Value Paralel Track Segments Between Adjacent Layers Paralel Track Segments Min Gap Between	
Check Segments On Attrobute Name Check Segments On Match Value Check Segments On Layer Check Segments On Layer Check Segments On Area Against Parallel Segments On Attribute Name Against Parallel Segments On Match Value Parallel Track Segments Between Adjacent Layers Parallel Track Segments Min Gap Between Parallel Track Segments Max Parallel Length	Check Segments On Attribute Name Check Segments On Match Value Check Segments On Layer Check Segments On Layer Check Segments On Area Against Parallel Segments On Attribute Name Against Parallel Segments On Match Value Parallel Track Segments Between Adjacent Layers Parallel Track Segments Max Parallel Length	

There are three check boxes which when used in conjunction with each other will allow you to customise the way rules in the CSV file are imported and what happens in the event of new and exist rules found.

Add new rules – allows you to add new rules from the CSV file. Using a combination of the check boxes below will determine what happens if the rule already exists.

Keep existing rules – If a rule is imported and it already exists you can keep it (as is) or by selecting the check box below, will allow you to update the rule value.

Update with new values – use this check box if you wish to update an existing rule with new values from the CSV file. This option is only available if the **Keep existing rules** check box is selected.

Report

The **Report** button on the import dialog will check and report the contents of the CSV file to be imported. The summary presents you with the number of rows found, this acts as verification and any errors found. Errors will include name or syntax errors within the file.

```
Import CSV Rules
_____
Report Written : 17/08/2016 04:33:20 PM
Design Path : C:\Documents\HS Diff Pairs.pcb
Design Title :
Created
            : 25/10/2015 02:46:34 PM
            : 14/01/2016 05:31:55 PM
Last Saved
Editing Time : 588 min
Import File
            : C:\Documents\Track Parallel Segments Rules.csv
Import Summary
_____
Rows Found : 6
Errors Found: 0
```

Format of the CSV File

CSV files can be exported to provide you with a 'base' file formatted in the expected Pulsonix format ready for modification and subsequent import. You may also create CSV files from Excel for example using the appropriate format. Again, exporting an empty rules page in CSV format first will give you a blank data template to work with.

When editing values in the CSV file, the names used must match names as they appear on the dialog itself. For example, a layer side name of Top, Bottom, Inner or Outer is acceptable but Solder or Component would not be.

Rules Spreadsheet

As part of the **Interactive High Speed Rules** option, the **Rules Spreadsheet** dockable PCB bar displays information about Nets, their rules and where the rules are being violated. The display is updated dynamically as tracks are added and edited.

This option is available as the **Rules Spreadsheet Bar** on the **View** menu or from the context menu when right-clicking on the Pulsonix framework.

ow <u>H</u> elp			
	~	Menu Bar	
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~	Standard	
	~	Edit	
		Dockable Views	
		Alignment	
	~	PCB	
		Macros	
	B	Colour Files	
	ð	Component Bin	В
	9	Database	
		Design Browser	D
	8 P-P 8 T-T	DRC Errors	
	鉤	Find	Ctrl+F
	<u>, 0</u>	Layers	Ctrl+L
	13	Part Browser	
	3	Rules Spreadshee	et N
	2	World View	W
		Customise	

It is presented in the form of a spreadsheet in a dockable bar, you can switch between different information content.

Rules	les Spreadsheet															
	Vets		•	Edit	Colours	Options										
	Net	Net Class	Bus Name	Sub-Net Attr	i Pad1	Pad2	Min Length	Max Length	Length	Complete	Max Vias	Num Vias	Min Text Probes	Num Test P	Max Length	Length Diff
DI	FF1	Diff			-	-			1281.54 Est.		2			0	150.00	
DI	FF2	Diff			-	-			1880.92 Est.		2			0	150.00	
D	RIVE	Sig2		<b>_</b>	-	-	1000.00	1500.00	3031.84 Est.		2		1	0		
				Pin_Order	<u> </u>	<u> </u>			0.00		2					
					C12.2	PL2.1	750.00	1100.00	617.31 Est.		2	0				
					C12.2	Q5.3	750.00	1100.00	719.61 Est.		2	0				
					C12.2	Q6.3	750.00	1100.00	951.72 Est.		2	0				
					PL2.1	Q5.3	750.00	1100.00	370.71 Est.		2	0				
					PL2.1	Q6.3	750.00	1100.00	1701.27 Est.		2	0				
					Q5.3	Q6.3	750.00	1100.00	1330.56 Est.		2	0				
E/	AT .	Signal					100.00	700.00	4136.39 Est.					0		
Hi	gh speed	Siq2		I 📕	<b>  ↓</b>	- I	1000.00	1500.00	5095.79 Est.		2		1	0		

Differential Pairs and Nets are available for selection on the drop down list.

	Rul	es Spreads	heet		_			
	-12	Nets		-		Edit	Colours	Options
		<ul> <li>Differential F</li> <li>Nets</li> </ul>	'airs	.h	t	Max Length	Length	Complete
V		DIFF1	Diff 😞		T		1281.54 Est.	
		DIFF2	Diff		-		1880.92 Est.	
		DRIVE	Sig2	1000.00	1	1500.00	3031.84 Est.	
		FAT	Signal	100.00	1	700.00	4136.39 Est.	
		High_speed	Sig2	1000.00	Ĩ	1500.00	5095.79 Est.	
		HS	HS	3000.00		5000.00	12662.20	

#### Choosing the spreadsheet type

Use the dropdown list in the dialog header to set the current spreadsheet type, or if the list is not visible select the required spreadsheet type from the shortcut menu. Choose between displaying a list of **Differential Pairs** or a list of **Nets**. Differential pairs have one row per item, whereas Nets can have additional rows to display sub nets (defined by pin attribute) or to display pin pairs in the net. The existence of these rows depends on which columns have been included. The additional rows can be shown or hidden by pressing the small triangle icon in the owner row above them.

#### **Rules Spreadsheet Edit**

The Edit button is used to define what information (columns) are shown in the rules spreadsheet grid.

Edit Differential Pairs Spreadsheet Columns	<b>—</b> ×-	Edit Nets Spreadsheet Columns	<b>—</b> ×
Current Columns:          Net1         Pad11         Pad12         Net2         Pad21         Pad22         Complete         % Paired         Paired length         Length Diff	OK Cancel Restore Default: Full Move Up Move Down Delete	Current Columns: Net Net Class Bus Name Sub-Net Attribute Pad1 Pad2 Min Length Max Length Complete Max Vias Min Text Probes Num Vias Min Text Probes Num Test Probes Num Vias	OK Cancel Restore Default: Minimum Full Move Up Move Down Delete
New Column:		New Column:	
Allow Spurs -	Add		Add

Using the **Minimum** button allows you to select a minimum number of fields to display. The **Full** button shows a more complete list. Both lists can be enhanced by selecting additional fields using the **New Columns** button and using the **Add** button to add them to the list. Once chosen, the order can be moved using the **Move Up** and **Move Down** buttons. Use the **Delete** button to remove the field from the display list.

## **Rules Spreadsheet Options**

The **Options** button is used to set up your preferences for the rules bar behaviour and to specify which items are not to be included. If the button is not visible, Use **Spreadsheet Options** from the shortcut menu. The options are retained in the system registry so that your choice is preserved for future use.

Rules Spreadsheet Options	
General:	
🔽 Update Whilst Dynamic	
Auto Scroll To Selected or Dynamic	e Item
Nets Spreadsheet:	
Include Power And Ground Nets	Include Nets Without Rules
Include Default Nets	

**Update Whilst Dynamic** - Generally information in the spreadsheet is updated as soon as items in the design are changed. For large nets on some designs this can take a while, especially whilst placing items and adding track segments. Unchecking this box will stop the "continuous" updating that happens whilst moving items during interactive operations, and they will only be updated when the item is dropped or a corner is added. Leave the box checked if you want to see the track length changing "on the fly" as you move across the board, for example if you are using the spreadsheet instead of the head up track length display on the cursor.

**Auto Scroll to Selected or Dynamic Item** - Check this box to ensure the current item in the design is always visible in the spreadsheet by automatically performing a vertical scroll.

**Include Power And Ground Nets** - Check this box if you want to include nets that use a net class with type power or ground. These nets are often not required as net track length is not an issue with them. They usually have a lot of nodes and can take a long time when calculating values, like completion for example, as they need to check planes and poured copper.

**Include Default Nets** - Check this box if you want to include nets that don't have a user defined net name.

**Include Nets Without Rules** - Check this box if you want to include nets that don't use a net class containing track, via or probe rules. These nets are not normally required in the nets spreadsheet as they have no rules to check against.

#### **Rules Spreadsheet Colours**

Use the **Colours** button to change the colours of the spreadsheet cells, and to define how to highlight the row that represents the item that is currently selected or being edited in the design. If the button is not visible, Use **Spreadsheet Colours** from the shortcut menu. All colours in this dialog are retained in the system registry so that your choice of colours is preserved for future use.

Rules Spreadsheet Colours	
Cell Colour:	
Each cell in the spreadsheet will have one of the f Click on the coloured block alongside each one to	ollowing highlight colours. change its colour.
Not used:	<b>•</b>
Information:	<b></b>
Rule::	<b></b>
Editable rule or value:	<b></b>
Value that satisfies the rule:	<b></b>
Value less than the minimum rule value:	<b>•</b>
Value more than the maximum rule value:	
Row Colour:	
Selected Item: 👽 Text 👿 Underline	•
Important Item: 📝 Text 📝 Underline	•
OK Cancel I	Reset To Defaults

The top section shows a set of colour buttons showing the colours that will be used for each cell information type. Click on a colour block to change its colour.

**Not Used** - This colour is used for cells that are not needed, i.e. their column is not relevant for their row. For example the "Net Name" cell on a pin pair row.

**Information** - Used for cells that represent non editable information about the row's data item, that is not directly associated with a rule. For example the two net names for a differential pair.

**Rule** - This colour is used for non-editable values that represent a rule limit. For example the maximum track length for a net. To change these values you must visit the appropriate dialog in the technology.

**Editable rule or value** - Used for values that are editable. These usually represent a rule limit that is directly editable in the spreadsheet (like the differential pair rules) or an information cell that you can alter to change what data its row represents (pin name cells in a pin pair row on a large net for example).

Value that satisfies the rule - This colour is used for values that are within their corresponding rule limits, and therefore represent a rule pass. For example a nets track length that is within the defined minimum and maximum rule values.

Value less than the minimum rule value - Used to highlight values that fall short of their corresponding minimum rule limit. For example a pin to pin track length that is less than the minimum pin to pin length defined for a net, or a net complete cell on a net that has tracks missing.

Value more than the maximum rule value - Used to highlight values that exceed their corresponding maximum rule limit. For example a pin to pin via count that is greater than the maximum number of vias allowed between pins on the net class.

The lower section shows how the selected or important items in the design have their rows highlighted in the spreadsheet. For each highlight type you choose a colour that will be shown as a block in the first column of the row, and choose whether the text in the row is displayed with this colour, and also if the row is underlined with the colour.

**Selected Item** - This row represents the single net or differential pair in the design that is selected, or a part of it that is being edited (a track being edited for example).

**Important Item** - These rows represents nets or differential pairs that have been marked as important in the spreadsheet. See above for information about highlighting rows for important items.

The **Reset To Defaults** button will return the colours and highlight check boxes to their original "factory" settings.

#### **Hiding Dialog Buttons**

You can maximise the space available for the spreadsheet grid by using **Hide Dialog Buttons** from the shortcut menu to remove the dialog controls above the spreadsheet and move the spreadsheet up.

Nets		•	E dit		Eloating
Net	Net Class	Bus Name	Sub-Net At		<u>D</u> ocking
DIFF1	Diff			~	<u>A</u> uto Hide
DIFF2	Diff				Hide
DRIVE	Sig2		<b>_</b>		<u></u>
FAT	Signal			50	Remove Highlights
High_speed	Sig2		<b>_</b>	1	Decelect All
HS	HS			NK	Deselect All
HS2	HS			1	Refrech Spreadshee
HS4	HS				Refreation opreadance
Low speed	Signal				Hide Dialog Button
_speed	Signal				Hide Dialog Button

The **Show Dialog Buttons** option will reverse this. When hidden, you can still change the spreadsheet colours, options and columns by using commands on the shortcut menu. If the buttons are hidden, the title of the bar will include the spreadsheet type.

1	Net	Net Class	Bus		Floating	Pad2	Min Le
1	DIFF1	Diff			Docking	-	
ĺ	DIFF2	Diff		~	Auto Hide	-	
	DRIVE	Sig2				-	1000.0
	FAT	Signal			Hide		100.00
	High_speed	Sig2		8.8	Demove Highlights	<b>_</b>	1000.0
	HS	HS		20,0	Remove Highlights	-	3000.0
	HS2	HS		X	Deselect All	-	3000.0
	HS4	HS				_	3000.0
	Low_speed	Signal			Refresh Spreadsheet		100.0
	N083	Signal			Show Dialog Buttons		100.00
					Differential Pairs Spreadsheet		
4				~	Nets Spreadsheet		
•	💈 Rules Spre	adsheet - Ne	ts			_	
w Dialog Buttons					Edit Spreadsheet Columns		
					Spreadsheet Colours.		
					Spreadsheet Options		

## Highlighting important items

Using left click in any cell in the first column that represents a differential pair or net (i.e. not a sub row) will mark the item the row represents as "important" to you. The row will be highlighted to enable you to quickly see the information whilst editing the design. You can specify how the row is highlighted using the spreadsheet **Colours** dialog. Use **Remove Important Items** from the shortcut menu to clear the spreadsheet of any highlighting of important items. Use **Make Selection Important** from the shortcut menu to highlight all rows that have selected items in the design.



If a single differential pair or net is selected or is being edited, the row will be highlighted as the "selected" row. How the selected row is highlighted is defined in the spreadsheet **Colours** dialog. There is a spreadsheet option (see below) to ensure that the selected row is always scrolled to be visible.

## Nets and Rules in the High Speed Option

## Nets Items

This is brief introduction to Nets, Diff Pairs, Diff Pair Chains, Signal Paths, Sub Nets and applying rules to them.

Within the **Technology**, there are pages in the **Nets** section for defining facets that are properties of a net or multiple nets, Signal Paths, Sub-Nets, Differential Pairs and Chains of Differential Pairs. Each of these net items can have attributes assigned and rules added to them.

#### Why and when to use each category

To summarise each category, here is what they are used for in Pulsonix:

#### Standard net items

**Nets** – All Nets (Connections) within the design have a **Net Name** with a **Type** (*see special note below about Type*) and (optionally) a **Guard Space**. They can also have a set of attributes containing rules added, for example, a **Track Length Rule**. They can also have an optional **Net Class** associated with them. Net Names can be user defined or default names automatically assigned by Pulsonix.

**Net Class** – Net Classes have a **Net Class Name**, a **Type** and a flag to **Mark All Nets As One**. It also contains Net Class based **Track Length Rules**. A Net Class is an alternative method of 'grouping' nets to which the same parameters can be associated. This is a general method for grouping categories of nets but can be achieved more efficiently using alternative methods. Nets do not require a Net Class, all rules can be attached to a single net or multiple nets.

**Net Styles** – All default [physical] styles (Tracks, Vias etc.) associated with a Net Class or Net Attribute are defined in the **Net Styles** dialog. This dialog is also used to define how tracking will behave on different **Layers**, within **Areas** and for **Layer Spans**.

#### Net items for the High Speed Design Option

**Signal Paths** – Signal Paths represent another level of net definition. The path is a named item containing an ordered list of pads that represent a signal path. You might use this within High-Speed designs for example where constraints are required. This could be where the overall track length of the signal path would require a specific defined length rule(s).

**Sub Net** – These define part of a net which may require special considerations. These are defined in the **Sub Nets** dialog using an **attribute name** and **value**. Pins on the same net with attributes that match it are deemed to be in the same sub net. One definition can define sub nets in multiple nets. You may use this for example, when creating branch lengths or a specific daisy chain order in a High Speed design.

**Differential Pairs** – The Differential Pairs dialog is used to define the Differential Pair s and Differential Pair Chains (see below). All other Differential Pair specific rules such as **Pair Gap** and **Pair Length** are contained in their own dialog under the **Rules** – **High Speed** section.

**Differential Pair Chain** – A Differential Pair Chain is two or more (existing) Differential Pairs added to a named list to create an extended list. This is used for associating multiple Differential Pairs so that lengths or net rules can be defined for the overall 'path'. This path may be split with a terminating component for example and will contain different net names. As with Differential Pairs, a design can contain multiple Differential Pair Chains.

**Type** – a net always has a Type, this is assigned when the net is introduced to the design. It can be one of three states; Power, Ground or Signal. Type is used for some net-based options such as Optimise, Design Rules Checks, ERC and Autoplace.

## Rules

## What is a rule?

A rule is a collection of specific conditions and characteristics that can be assigned to a net. Whereas previously these rules were bundled to be set on Net Classes, they are now individual facets that can be assigned to any net or sets of nets. Rules are attribute driven. Some 'rules' are system 'attributes' such as <Net Name>, <Net Class> etc. but user defined attributes can be added as well.

User defined attributes would be created when system attributes do not provide enough range for rules coverage. For example, a Track Length rule might be applied to multiple net names that do not have a common name format, like CLK, RST, DQ1, ADD3 etc.

#### What characteristic might a rule have?

Rules can be standard items such as Copper Pour, Thermal connectivity, Teardrops and Net Styles etc. More advanced rules might include facets such as Track Length, Track Length Match, Serpentine and Track RF features so mention a few.

#### What can a rule be assigned to?

Rules can be assigned to any Net, Signal Path, Sub-Net, Differential Pair and Differential Pair Chain. This means one (or multiple) rules can be applied to multiple net categories. For example, a number of Thermal rules can be defined and applied to all signal or power style nets. Likewise, a Track Length Match rule can be applied to multiple sets of Differential Pairs to ensure they are all within length difference of each other.

Rules may also still be assigned to a Net Class if required but with this style of rules structure is less likely to be used this way.

In addition to assigning rules to Net items, in the Thermal Rules and Teardrop Rules dialogs, you can also assign rules to <Pad Style Name>. This means specific rules can be added for pad or via styles for ranges or specific pads.

#### Key headers used in the rules dialog

There are some essential headers that are used within the rules dialogs and are highlighted below:

 $\overline{\mathbb{N}}$			Total Track Length		Total Track Length			For Nets and Sub	onets Apply Rule To
$\downarrow$	Attribute Name	Match Value	Minimum	Maximum	Max Vias	Total Track Length	Pin To Pin Track Length		
Tra	ackLengthRule	1000-1500	20.00000	28.00000	2		⊻		

Attribute Name – this is the name of attribute that will define the rule, for example, this could be one of the system 'attributes' such as <Net Name> or <Net Class Name>, or it could be your own user-defined attribute name, such as TrackLengthRule

**Match Value** – once an Attribute Name has been defined, you must give it the name of something to match. This could be a unique Net Name, CLK for example, or a range of Net Names to apply the rule to, such as ADD0 to ADD9. Using Ranges to match the attribute means a single rule can be applied to multiple instances.

## Creating and applying Rules

Rules can be created and applied using two methods:

#### Method 1

Create your rules first in the Rules sections (in the Technology dialog under DFM/DFT and High Speed) and apply them to the net(s) required.

As an example, we'll show the addition of a **Track Length Rule** but the principle applies to all rules. Create the rule by adding an **Attribute Name** and **Match Value**, plus your rule **values**:

🔳 Technology [] - Rule	s - High S	peed	- Track Length							
Layers A					Total Tra	ck Length		For Nets and Sul	onets Apply Rule To	Т
Layer Classes			Attribute Name	Match Value	Minimum	Maximum	Max Vias	Total Track Length	Pin To Pin Track Leng	yth
Materials		$\setminus$	<net name=""></net>	ADD*	15.00000	81.00000	2			
Nets	L		<net name=""></net>	ALARM	33.00000	44.00000	2			

On the **Nets** page, if the new attribute matches the rule, the attribute name and value will be automatically adopted. If the rule doesn't match automatically, apply the rule by typing the rule name in the **Attribute** field (or selecting it from the drop down list which will be populated from the list of available rules).

The example below is specific to the **Track Length** rule as this is directly shown in the **Nets** dialog:

Technology [] - Nets - Net Names											
Layers ^								Track Le	ngth Rule		
Layer Spans Layer Classes		Name	Net Class	Туре	Guard Space	Check Same Net	Attribute	Match	Minimum	Maximum	
Materials	Y	A	Signal	Signal	0.00000			_			-
🚔 Nets	Y	ADD1	Sig2	Signal	0.00000		<net name=""></net>	ADD*	15.00000	81.00000	
Differential Pairs	Y	ADD2	Sig2	Signal	0.00000		<net name=""></net>	ADD*	15.00000	81.00000	
Net Classes	Y	ADD3	Sig2	Signal	0.00000		<net name=""></net>	ADD*	15.00000	81.00000	
Net Names	Y	ADD4	Sig2	Signal	0.00000		<net name=""></net>	ADD*	15.00000	81.00000	
Signal Paths	Y	ADD5	Sig2	Signal	0.00000		<net name=""></net>	ADD*	15.00000	81.00000	
Sub Nets	Y	ADD6	Sig2	Signal	0.00000		<net name=""></net>	ADD*	15.00000	81.00000	
Bules DEM/DET		AR_D	Signal	Signal	0.00000						
Cules - DEM/DET		ALARM		Signal	0.00000		<net name=""></net>	ALARM	33.00000	44.00000	
Copper Pour		AXIS2		Signal	0.00000						
Footprint		AXIS3		Signal	0.00000						
Net Styles	Y	В	Signal	Signal	0.00000						
Dia Naturatia		hoh	Sinnal	Sinnal	0 00000						

All rules added to a net-based item are displayed in the relevant dialog in the **Rules** and **Attributes** tabs:

<u>N</u> ame:	HS	Rules Attributes
Used:		Track Length Rules: <net class="" name="">=HS [Min: 5.08000 Max: 81.28000] Add</net>
Net <u>C</u> lass:	HS v	Net Styles: <net class="" name="">=HS Track Side: 'All', Via on any Layer Span [Tr</net>
<u>T</u> ype:	Signal 🗸	Layer Change Length Rules: None Copper Pour Rules: =* [Min Island: 1.61290 'Remove isolated Necked Length Rules: None
Check betw	een items on same net:	Serpentine Rules: <net class="" name="">=HS [Amplitude Min: 3.17500 Max: 6.3500 Taardmo Rules: <net class="" name="">=* [Shane: 'Triangle' V.Angle: 60.0 Apply To</net></net>
Guard	0.00000	<>

Method 2 – Track Length Rule & Track Length Match Rule

When using the **Track Length Rule & Track Length Match Rules**, an alternative is to write the rule directly into the dialog that requires it (Net Name, Net Classes, Signal Paths and Sub Nets). Once the attribute (Rule) is written, it then becomes a rule within its own right and appears in the relevant Rules page where it is available for use on other nets.

To do this: write the rule into the **Attribute** cell along with the **Match** and **Values** to be used. In the example below, the <Net Name> system attribute has been selected. The typed Match will be FB0? And values of 22.0 and 27.0 for Min and Max Track Lengths respectively. This then matches the Net names FB01-04 but not FB011 (? will only match one character).

Technology [] - Nets - Net Nam	es												
Spacing Rules	^	Γ					Guard	Check		Track	Length Rule		
Net Class Level				Name	Net Class	Туре	Space	Same Net	Attribute	Match	Minimum	Maximum	
Match Pair Level			Y	FAT	Signal	Signal	0.00000						Ē
Check Spacing Values			Y	FB01	Signal	Signal	0.00000		<net name=""></net>	FB0?	22.00000	27.00000	r
a Styles			Y	FB02	Signal	Signal	0.00000		<net name=""></net>	FB0?	22.00000	27.00000	ſ
Hatch			Y	FB03	Signal	Signal	0.00000		<net name=""></net>	FB0?	22.00000	27.00000	ſ
Line			Y	FB04	Signal	Signal	0.00000		<net name=""></net>	FB0?	22.00000	27.00000	Ē
Pad				FB011	Signal	Signal	0.00000						Ē
Text				Gnd	Power	Power	0.00000						[

## **Using Attribute Rules**

Once Attribute Rules have been defined, they can be matched on a net item by Rule Value or by Rule Name depending on which scheme best matches your requirements.

**Match the rule value** - any item with the rule attached and matching the value. For example Attribute Name=TrackLength, Match Value=2.0. Where a net then contains an attribute of TrackLength and a Matched Value of 2.0, the rule will be applied.

**Match the rule name** - any item with the rule attached, with no value (%# must be used as the value to show a field with no value), but match by rule (attribute) name.

#### **Rule Matching Examples**

Wildcards are a powerful way to create ranges for selection, below shows a selection of wildcard ranges:

Attribute Name (Rule)	Match Value	Rule Values	Description
<net class=""></net>	Signal	XX	A specific Net Class name of Signal has the rule applied (where xx is your rule value)
<net name=""></net>	DQS*	XX	Any net starting with DQS
<net name=""></net>	DQS%[1:7%]	XX	Any net between DQS1 to DQS7
<differential name="" pair=""></differential>	% {DQS* DSM*% }	XX	Any Diff Pair starting with either DQS or DSM will have the rule applied. The strings are separated by a pipe ( ) character.
TrackLength	2.0	XX	Any net that has the attribute with the name TrackLength matching a value of 2.0 will have the rule applied.
TrackLength	<i>Blank</i> (will be written as %#)	XX	Any net with the attribute name TrackLength with no value will have the rule applied.

## Wildcard Wizard

When a wildcard needs to be defined to create name ranges, you can use the **Wildcard Wizard**. This allows you to create wildcards, often, complex wildcard strings (or simple ones), that are presented in non-programming terms.

On dialogs where wildcards are accepted, there is a button to access the wizard.

N	Attribute:	<net class="" name=""></net>		~			
$\Box$	Match:	GND		~ 🕺			
V	Applies To: [ Min Pad Size	Via :: 0.000	~		Enclosed F	'ads Only: 🗌	0
	Connect Typ	al Pad	~				C
					Orthogonal S	pokes:	
						Isolation Ga	ар: 0.254

Pressing the button opens up the Wildcard Wizard dialog:

Wildcard Wizard	×
String: Any 🗸	
Wildcard String: *	
<u><u> </u></u>	Cancel

Wildcard String expressions are defined from the drop down list:

🔳 Wild	dcard Wizard	×
String: Wildcar	Any Any Begins with Does not begin with Ends with Does not end with Matches Does not match Contains Does not match	Cancel
	Range Does not include range Empty string	

On selection of a **String**, you can type in the value to match. The **Wildcard String** is shown in the Wizard dialog.

Х	Wildcard Wizard
	String: Does not begin with V DDR3
	Wildcard String: 2^DDR3*
	OK Cancel
	Wildcard String: %^DDR3*

When **OK** is pressed, the wildcard string is shown as the **Match** value back in the host dialog.

Attribute:	Vias	$\sim$	
Match:	%^DDR3*	~	×

## **Signal Paths**

What is a Signal Path?

Signal Paths represent another level of net definition. The path is a named item containing an ordered list of pads that represent a signal path. For example, you can use this for High-Speed designs where constraints on specific signals are required or for defining portions of a net where specific rules should be applied, such as Thermal or Copper Pour Rules.

The difference between a rule on a Net and the same rule on a Signal Path is that the signal path can be just a portion of the net (or multiple nets), whereas, a net rule is applied to a whole net.

The **Signal Path** dialog is used from within the **Technology** and provides an interactive mode and modeless dialog to create signal paths.

#### Using the Signal Paths dialog

Signal paths are added in the Signal Paths page within the **Technology** dialog. From this page, **Track Length** and **Track Match Rules** can be applied if required or you can use the Signal Path name within other rules, such as **Net Styles**, **Serpentine Rules** or **Thermal Rules** etc.

Name	Pin Count	St	art Pin	En	d Pin	Use Own	Colour		Track Le	ngth Rule		Track	<u>N</u> ew
name	FillCount	Pin	Net	Pin	Net	Colour	Colour	Attribute	Match	Minimum	Maximum	Attribute	
RA7.1-U2.C7	2	RA7.1	DQM11	U2.C7	DQM11			TrackLength	2.0	1.0	2.0		
Name: RAX Pads In The RA7.1 [ U2.C7 [	7.1-U2.C7 Signal Path: DQM11 <1 DQM11 <1	Fop Side Fop Side	*>	Revers	ee Path	Add Remove Up Down	Rules At Track Let Track Ma	tributes ngth Rules: Tra tch Rules:	ckLength=2.0	Min: 1.0 Max	<b>o</b> x: 2.0	-	Add Edit Delete

There are two dialogs to this function; the main dialog for managing the rules and the secondary dialog to create the signal path. The dialog above is the management dialog.

The dialog below (the signal path chooser) is for signal path creation and is activated from the Signal Paths dialog. It enables you to search for signal paths between two chosen Components, or signal paths that pass through a selected series Component. These items can be selected in the lists at the top

🔳 Create Signal Path								_	o x
Define Signal Paths: 💿 B	etween Componer	nts 🔿 Through	Series Components		Signa	l Path Can Pa	ss Through: 1 Serie	es Component(s):	:
Starting From Component:	Use Filt	er>> Th	nrough Nets:	L	se Filter >>	Ending O	n Components:	Use Filte	er >>
R4         RM2400CXwC100           R5         RM750CXwC1005           R3         RM000CXwC1005           R10         RM000CXwC1005           R11         EX8V28V1500           R42         EX8V28V1500           R43         EX8V28V1500           R44         EX8V28V1500           R45         EX8V28V1500           R46         EX8V28V1500           R48         EX8V28V1500           R48         EX8V28V1500           R48         EX8V28V1500           R48         EX8V28V1500           R49         EX8V28V1500           R49         EX8V28V1500           R49         EX8V28V1500           R49         EX8V28V1500           R49         EX8V28V1500           R49         EX8V28V1500	95 5 5		208 RA7.5 209 RA7.6 201 RA7.7 201 RA7.7 201 RA7.8 2008 RA7.4 2009 RA7.3 2010 RA7.2 2011 RA7.2			RA12 RA20 RA21 RA22 RA23 RA24 RA26 RA27 RA28 U1 U2 U3 U4 U10	EX8V28/150J EX8V28/360J EX8V28/360J EX8V28/360J EX8V28/360J EX8V28/360J EX8V28/360J EX8V28/360J EX8V28/470J DPR3_88 DDR3_88 DDR3_88 DDR3_88 ZX3_TS		~
	Find Signal Paths	1N	Vet(s) Selected			1 Compo	nent(s) Selected		
Possible Signal Paths:	ninu Signai Fauris	Dim Desig	gn To Show Signal Pa	n 🗹 Highlig	ht Items in Signa	Path			
Create Signal Path Name RA7.1-U2.C7	Pins 2 R4	Start Pin No. 17.1 DQM11	et Pin 1 U2.C7	Pin Net DQM11	Pa	ds In The Sigr	nal Path: Rev	erse Path	
						47.1 DQM 2.C7 DQM	111 < Top Side> 111 < Top Side>		Add Remove Up Down

of the dialog, or interactively in the design. A signal path doesn't necessarily have to be a direct path through pins and can be 'split' through a series component.

## **Creating Signal Paths**

The **Signal Path** selection dialog can be invoked using the **New** button from the **Signal Paths** dialog or from the context menu when a component or pads on a component(s) are selected. This dialog will provide you with **Start** and **End** Component pins and connecting nets (**Through Nets**).

A Signal Path doesn't have to be on the same net (it can be though) but when split, can be through a component. You can choose the radio button **Through Series Component** to refine the component pin selection and choose to how many series components the **Signal Path Can Pass Through**.

Once your signal path has been chosen, press the **Find Signal Path** button to add it to the **Possible Signal Paths** list. This will display your choice in the grid. As you select a row in the grid, the pads, connections and tracks in the signal path are displayed in the design.

If satisfied with the signal path displayed, press the **Create** button. If this is your only selection at this point, press **OK** or **Apply** to add the selection to main Signal Paths dialog. If not satisfied with the selection, leave the Create button unchecked and make a new selection in the chooser.

There are additional check boxes on this dialog to assist with the display and selection of items chosen. The **Dim Design To Show Signal Path** check box is used to dim all other items so you can easily see the signal path. Likewise, use the **Highlight Items In Signal Path** to make the selected items stand out. This can be used in conjunction with the **Dim Design** button.

Signal paths that are already defined in the main **Signal Paths** dialog will be indicated and changes disabled.

Press **Apply** or **OK** to add the signal paths as entries in the design. Each component pad in the path will be remembered and along with its order with the path.

Once a Signal Path has been created, the main dialog presents you with edit controls for the current signal path in the grid.

Name: J1	.98-U9.C8			Own Colour: 📘	
Pads In Th	e Signal Path		Reverse Path		
J1.98 RN30.1 RN30.4 U9.C8	RDQ48 RDQ48 DQ48 DQ48 DQ48	<top side=""> <top side=""> <top side=""> <top side=""> <top side=""></top></top></top></top></top>		Add Remove Up Down	Rules Attributes

Use these to indicate you want to create the path, apply a name for the signal path and allocate a track length and length match rule to it. If the path is to pass through more than two pins within a particular net, the extra pins can be added into the correct place in a pad list.

#### Adding Multiple Signal Paths in one hit

Multiple signal paths can be created at the same time.

In the example below, Connector J1 has been chosen as the **Start Component**. As it happens, this has all the nets required exiting from it. You must then choose the nets required for the paths in **Through Nets**. Multiple nets can be chosen at one time by dragging down the list or using standard Shift/Ctrl combinations. Likewise, you can make multiple selections in the **Ending On Components** list. Choose the components required.

Create Signal Path			— 🗆 X
Define Signal Paths:      O Between Components     O Th	nrough Series Components	Signal Path	Can Pass Through: 1 Series Component(s):
Starting From Component: Use Filter >>	Through Nets:	Use Filter >> Er	nding On Components: Use Filter >>
Branch1	RDM6 J1.220	B	iranch5
Branch2	RDM7 J1.230	J	1 DDR3_240PIN_EDGE-TAB_DDR3_URDI.
Branch3	RDQ48 J1.98	F	26 2PORT_RES-150HM,SMD_1005-SMD_1/
Branch4	RDQ49 J1.99	F	127 2PORT_RES-150HM,SMD_1005-SMD_1/
Branch5	RDQ50 J1.104	F	IN29 4PORT_RES-150HM,2SR_1010-2SR_1A
J1 DDR3_240PIN_EDGE-TAB_DDR3_URDI	RDQ51 J1.105	F	N30 4PORT_RES-150HM,2SR_1010-2SR_1A
R26 2PORT_RES-150HM,SMD_1005-SMD_1/	RDQ56 J1.108	F	IN31 4PORT_RES-150HM,2SR_1010-2SR_1A
R27 2PORT_RES-150HM,SMD_1005-SMD_1/	RDQ57 J1.109	F	IN32 4PORT_RES-150HM,2SR_1010-2SR_1A
RN29 4PORT_RES-150HM,2SR_1010-2SR_1A	RDQ58 J1.114	F	IN33 4PORT_RES-150HM,2SR_1010-2SR_1A
RN30 4PORT_RES-150HM,2SR_1010-2SR_1A	RDQ59 J1.115	F	IN40 4PORT_RES-150HM,2SR_1010-2SR_1A
RN31 4PORT_RES-150HM,2SR_1010-2SR_1A	RDQS6 J1.102		J8 DDR3_X8_78BALL_V2_8-DRAM_DDR3_
RN32 4PORT_RES-150HM,2SR_1010-2SR_1A	RDQS6B J1.101		J9 DDR3_X8_78BALL_V2_8-DRAM_DDR3_
RN33 4PORT_RES-150HM,2SR_1010-2SR_1A	RDQS7 J1.112		J10 DDR3_X8_78BALL_V2_8-DRAM_DDR3_
RN40 4PORT_RES-150HM,2SR_1010-2SR_1A	RDQS7B J1.111		117 DDR3_X8_78BALL_V2_8-DRAM_DDR3_
II8 DDB3 X8 78BALL V2 8-DBAM DDB3 🎽			
	8 Net(s) Selected	4	Component(s) Selected

With this selection made, with the design dimmed, the proposed signal paths are displayed. You can use zoom and pan to navigate the design at this point.



When the **Find Signal Paths** button is pressed, the signal paths are added to the list of **Possible Signal Paths** if paths are available.

Create	Signal Path	Dine	St	art Pin	E	nd Pin	^					
create	Name	Fills	Pin	Net	Pin	Net	1					
	J1.98-U9.C8	4	J1.98	RDQ48	U9.C8	DQ48					D D I	
Π	J1.98-U10.C	4	J1.98	RDQ48	U10.C2	DQ48		Pads In The	e Signal Path		Heverse Path	
Π	J1.99-U9.E7	4	J1.99	RDQ49	U9.E7	DQ49		J1.98	RDQ48	<top \$<="" td=""><td>Side&gt;</td><td></td></top>	Side>	
Π	J1.99-U10.E3	4	J1.99	RDQ49	U10.E3	DQ49		RN30.1	RDQ48	<top !<="" td=""><td>Side&gt;</td><td>Add.</td></top>	Side>	Add.
	J1.104-U9.B	4	J1.104	RDQ50	U9.B3	DQ50		HN30.4	DU48	<lop !<="" td=""><td>Side&gt;</td><td>Dene</td></lop>	Side>	Dene
	J1.105-U9.D	4	J1.105	RDQ51	U9.D2	DQ51		03.00	0040	<rup.< td=""><td>5106/</td><td>nemu</td></rup.<>	5106/	nemu
	J1.105-U10.	4	J1.105	RDQ51	U10.C8	DQ51						Lin
Π	J1.108-U8.C	4	J1.108	RDQ56	U8.C8	DQ56						op
	J1.108-U17.	4	J1.108	RDQ56	U17.C2	DQ56						Dow
Π	J1.109-U8.E7	4	J1.109	RDQ57	U8.E7	DQ57						
	11 100 U17 F	4	11 100	RD057	1117 F3	D057	·					

To create the signal paths required, press the **Create** button. If all are required as would be in our example above, use **Create** on one cell and right click. Choose **Apply to entire Column** to select all columns.

Possible Sign	al Paths:	Find Signal Pa	ths 🔽	Dim Design To	Show Signal	Path 🗹 Hig	ghlig
Canada	Signal Path	Dime	St	art Pin	E	nd Pin	Т
Create	Name	Pills	Pin	Net	Pin	Net	
	14.00 04/20	•	14.00	RDQ48	RN30.1	RDQ48	
	Apply to	entire Row		RDQ49	RN30.2	RDQ49	
	Apply to	entire Colum	in k	RDQ50	RN32.1	RDQ50	
	1010100-11102	: 4		RDQ51	RN32.2	RDQ51	
	J1.108-RN29	2	J1.108	RDQ56	RN29.1	RDQ56	
	J1.109-RN29	2	J1.109	RDQ57	RN29.2	RDQ57	
	J1.114-RN31	2	J1.114	RDQ58	RN31.1	RDQ58	
	11 115-RN31	2	11 115	RD059	RN31.2	RD059	

Once created, the main dialog displays the Signal Paths:

	Din	St	art Pin	Er	nd Pin			Dieplay		Track Length Rul		
Name	Count	Pin	Net	Pin	Net	Colour	Colour	Connection	Attribute	Match	Minimum	м
J1.102-RN33.2	2	J1.10	RDQS6	RN33.	RDQS6				<signal n<="" path="" th=""><th>J1*</th><th>12.000</th><th>13</th></signal>	J1*	12.000	13
J1.104-RN32.1	2	J1.10	RDQ50	RN32.	RDQ50				<signal n<="" path="" td=""><td>J1*</td><td>12.000</td><td>13</td></signal>	J1*	12.000	13
J1.105-RN32.2	2	J1.10	RDQ51	RN32.	RDQ51			$\square$	<signal n<="" path="" td=""><td>J1*</td><td>12.000</td><td>13</td></signal>	J1*	12.000	13
J1.108-RN29.1	2	J1.10	RDQ56	RN29.	RDQ56			$\square$	<signal n<="" path="" td=""><td>J1*</td><td>12.000</td><td>13</td></signal>	J1*	12.000	13
J1.109-RN29.2	2	J1.10	RDQ57	RN29.	RDQ57				<signal n<="" path="" td=""><td>J1*</td><td>12.000</td><td>13</td></signal>	J1*	12.000	13
J1.114-RN31.1	2	J1.11	RDQ58	RN31.	RDQ58			$\square$	<signal n<="" path="" td=""><td>J1*</td><td>12.000</td><td>13</td></signal>	J1*	12.000	13
J1.115-RN31.2	2	J1.11	RDQ59	RN31.	RDQ59				<signal n<="" path="" td=""><td>J1*</td><td>12.000</td><td>13</td></signal>	J1*	12.000	13
J1.98-RN30.1	2	J1.98	RDQ48	RN30.	RDQ48			$\square$	<signal n<="" path="" td=""><td>J1*</td><td>12.000</td><td>13</td></signal>	J1*	12.000	13
J1.99-RN30.2	2	J1.99	RDQ49	RN30.	RDQ49				<signal n<="" path="" td=""><td>J1*</td><td>12.000</td><td>13</td></signal>	J1*	12.000	13

From here, you can add Track Length and Track Length Match rules.

## Interactively Creating Signal Paths

In select mode, you can select two pads on the same component and use the context menu option **Create Signal Paths** to create signal paths through the selected component, forcing it to be treated as a series component.



Once selected, the **Create Signal Path** dialog is available with the signal path preselected from where you can use the **Find Signal Paths** button to select the signal path. This entry will then be added to the **Signal Paths** within the **Technology**.

## **Sub Nets**

## Overview

Sub Nets define part of a net which may require special considerations. For example, it allows you to create rules for portions of a net such as a specific pin order (Daisy Chain), or to use attributes on a net to define rules. It also allows you to use portions of a net to use a specific style (i.e. track thickness) and for copying 'channels' of functionality that have net branches and require matching.

Within the **Technology**, Sub Nets are defined in the **Sub Nets** dialog using a pin **attribute name** and **value**. Pins in the same net with attributes that match it are deemed to be in the same sub net. One definition can define sub nets in multiple nets. You may use this for example, when creating branch lengths or a specific daisy chain order in a High Speed design.

## **Creating Sub Nets**

A new tool provides an interactive mode and modeless dialog to create sub nets. It can be invoked from the **New** button in the **Sub Nets** page within the **Technology** dialog. It can also be accessed from the context menu when a component pin(s) or net is selected.

🔳 Create Su	ub Net										_		×
Define Sub I	Net: —	In Net — O	) Use Existing f	Pin Attribute	🔾 Just A	dd Subnet Entry (Add	d Pin A	Attributes l	Later) —				
Nets: \$1 \$5 \$9 \$19 \$20 \$23 \$27 \$28 \$28 \$28 \$28 \$44 \$45 \$46 A	Signal	Use Filt	er >>	Component P R15.1 R39.2 R39.3 U5.22	ins On Net:	Hide Fi Filter Names Include Test Po Attribute:	ilter << oint Co	Apply	8				
	Sin2		~	2 Pin(s) Selec	ted								
Sub Nets:	Ad	d Sub Net Tol	List			im Design To Show	Sub N	let 🗹	Highligh	t Items In Sub Net			
Create	Sub Net Attribute Name	Match Value	Connect In Pin Order	Pins	St Pin	art Pin Net							
	SubNet1	ż		2	R15.1	\$27	F	Pads In Tł	he Sub N	et			
								R15.1 R39.3	\$27 \$27	<top side=""> <through board=""></through></top>		Add Remove Up Down	e
				OK	Ap	ply Ca	ncel						

You can define sub nets by selecting a list of **Pins In a Net**, or you can choose an **Existing Pin Attribute** name if pads already contain their sub net attributes.

Once the Sub Net has been created, you are returned to the **Sub Nets** dialog with the new sub net shown in the **Attribute Name** list:

Attribute	Match	Connect In			Display		Track Leng	jth Rule	
Name	Value	Pin Order	Colour	Colour	Connection	Attribute	Match	Minimum	Maximum
HS1	ż						HS1	6.35000	12.70000
Pin_Order	ż	$\checkmark$	$\checkmark$		$\checkmark$		Pin_Order	19.05000	27.94000

Attribute: Pin_Order Match: •	<ul> <li>✓ Own Colour:</li> <li>✓ Own Colour:</li> <li>✓ Connect In Pin Connect II Pin Connect III Pin Connect II Pin Connect II Pin Connect II Pin Connect II</li></ul>	rder (attribute value order)	
Nets Containing Sub Net:	Sub Net Pads In The Net: PL2.1 0 <through board=""> Q6.3 1 <through board=""> Q5.3 2 <through board=""> Q8.3 2 <through board=""></through></through></through></through>	Rules     Attributes       Add     Net Styles: None       Track Size Limit Rules: None     Add       Layer Change Length Rules: None     Edit       Value     Comparison Divisor Mana	

Once a sub net has been created that contains a list of ordered pads, you can use the **Add** and **Remove** buttons or **Edit Values** to adjust the sequence and make edits.

**Add** will allow you to pick multiple pins from any net. **Remove** will only work if the pad has a local attribute value (can't remove a part attribute value).

The **Edit Value** button is used to change the value on the attribute, for setting or changing a pin order for example. You will get an error if the value provided does not match the sub net attribute match string.

#### Creating template sub net names with no attributes

When creating sub nets there is a radio button in the **Create Sub Nets** dialog called **Just Add Sub net Entry**. Choosing this will hide the selection lists and create a new sub net row in the grid each time the **Add Sub Net To List** button is pressed. This allows you to create sub nets and pin attribute names, but assign the attributes to the pins at a later stage.

If creating sub nets in a Technology file there are no pins, so pressing the **New** button directly adds a blank sub net to the Technology page.

#### **Renaming Sub Net Attribute Names**

When renaming sub net attribute names, it should be noted that if the attribute name has already been defined for a sub net, that attribute name will still reside on the pin and will not be renamed. Effectively, you are creating a new Attribute name by renaming the existing one.

If you wish to change the attribute name, this must be done in the Attributes page of the Technology. Once the name has been changed, you will then need to select it using the Sub Nets dialog and Attribute Name.

In the example below, the attribute name pppppp has been renamed to Pin_Order. In order to use this new name, Pin_Order must be selected from the drop down list.

Attribut Name	te	Match Value	Connect In Pin Order	Use Own Colour
HS1		*		
рррррр	~	*	$\checkmark$	
Bob				
HS1				
Pin_Order				

## Connect In Pin Order

Choosing the **Connect In Pin Order** button on this dialog will allow you to define the daisy chain order for the routing sequence in your design. This is defined by the numerical value on the pin and is displayed in the **Sub Net Pads In The Net** box.

Attribute	Match	Connect In		Display		Track Length Rule			
Name	Value	Pin Order	Colour	Colour	Connection	Attribute	Match	Minimum	Maximun
HS1	ż						HS1	6.35000	12.70000
Pin_Order	*						Pin_Order	19.05000	27.94000

Attribute: Pin_Order Match: •	<ul> <li>✓ Own Colour: </li> <li>✓ Connect In Pin Order (attribution)</li> </ul>	Force Display Connections te value order)
Nets Containing Sub Net:	Sub Net Pads In The Net: QE.3 0 <through board=""> Q5.3 2 <through board=""> Q8.3 2 <through board=""> Chrough Board&gt; Chrough Chrough Chrough Chrough Chrough Chrough Chrough Chro</through></through></through>	Rules     Attributes       Net Styles: None     Add       Track Size Limit Rules: None     Edit       Layer Change Length Rules: None     Delete

The resultant design will connect in this specific order and **Optimise Nets** will also adhere to this order:



## **Existing Pulsonix V8.5 Designs**

If you have already used **pin attributes** to define sub nets in a previous version of Pulsonix, i.e. V8.5 or older, then these would now be converted into sub nets.

## **New Designs**

If starting a new design in V9.0, you could use Sub Nets to define specific Daisy Chain orders on a net.

#### **Designs Settings and Default Sub Net names**

Default Sub Net names can be predefined using the **Sub Net** entry on the **Design Settings** dialog. When used, the name is incremented each time it is used. You can edit and rename this name if required.

Design Settings - Defaults - Sub Net			
Defaults Area Attribute Bitmap	Sub Net name stem:	SubNet	Change

## Interactively Creating Sub Nets

In select mode, you can select multiple Component pads and Pad branches and use the context menu option **Create Sub Nets** to create sub nets containing those pins.

	Component, sympols	•
	Select Track Path	
	Create Signal Paths	
	Create Sub Nets	
<b>#</b> \$_3	Highlight Selection	
s	Insert Attribute	Shift+A
r	Properties	I

Once selected, the **Create Sub Net** dialog is available with the sub net preselected from where you can add this sub net entry to the **Sub Net** rules within the **Technology**.

## **Branch Points Overview**

Branch points enable intelligent splitting of nets. They are named items in the form of auto-generated doc symbols or user-defined doc symbols or vias (in PCB).

They can added to a net in a Schematic to indicate a point where the track in the PCB is to split to branch to two or more target pads. Alternatively they can be added to sections of a Net(s) for when you wish to create specific rules for given track segments e.g. fattening a track segment.



When added to a Schematic design they are automatically transferred to the PCB. Once added they can be used on **Signal Paths, Sub Nets** and **Differential Pairs**.

Branch points are added to the design using the **Add Branch Point** option or by using **Change Branch Point** on a selected **via**. When added, you are required to attach the branch point to a pad or connection.

Branch Points do not require a doc symbol for addition, you can specify that they are to be **Auto-Generated**, in which instance Pulsonix will add its own basic symbol suitable for use. The default branch point origin is shown as a target with three lines to make it stand out in a design.

The default symbol or auto-Generated symbol is specified in the **Design Settings** dialog and **Branch Point** page. You might use your own **Branch Point Doc Symbol** to add extra detail for plotting or some other highlighting. When branch points are used in the design they are zero size items and are purely used for electrical connectivity purposes.

Design Settings - Defaults - Branch Point		
Defaults	Name Layer:	Pin Names 🗸
Area	New Orles	Dia Managa
Bitmap	Name Style:	
Board	Name Stem:	Branch
Branch Point		Generated Symbol
Component	Doc Sym Name:	<generated symbol=""> Change</generated>
Construction Line	Orinin Diamatan	2.54000
Dimension	Ungin Diameter:	2.54000
Dimension Units		☑ Via Branch Point From Top
Doc Shane		

When adding a track (or a differential paired track) with a connection attached to the end that ends on a branch point, after finishing the track at a set position you will be asked if you want to move the branch point to the end of the track:

	X///	
	Question	×
	The finished track is connected to a branch point symbol. Do you want to move the symbol to the track end?	Yes
-		Report
¢/		Warnings On/Off
	v	Donot tell me again
		//2

If **yes** is pressed, the branch point is then moved to the end of the track:



If the track ends on a via then you will be asked if you want to change the via to a branch point via, replacing the doc symbol branch point.

Question		×
The track is connected to a branch point symbol. Do you want to replace the symbol by making the new via a branch point?	^	Yes No
	~	Warnings <u>D</u> n/Off

## **Branch Point Properties**

A branch point doc symbol or via has two new tabs in Properties to show the **Branch Point** name and **Branch Point Symbol** information.

The Branch Point tab allows you to display and change the name of the branch point.

Properties: Br	anch Point Sym	bol - Branch Point		– 🗆 X
Pad	Pad Attributes	s Vault	Net	Net Attributes
Branch Point Branc		ch Point Symbol	Branch Poin	t Symbol Attributes
<u>N</u> ame: Bra	anch1			

The **Branch Point Symbol** tab displays information about the position of the branch point and the symbol used.

Properties	: Branch Point Symbol	- Branch Point S	ymbol			Х
Pad	Pad Attributes	Vault	Net	Net	Attributes	5
Branch P	oint Branch F	oint Symbol	Branch Poin	t Symbol /	Attributes	
<u>N</u> ame: B Position: 1 Angle: 0	ranch1 52.90800 66.67500 .0 <u>M</u> irrored	<u>L</u> oc <u>S</u> cale: <u>1.000</u>	ked			
Symbol:	Generated Symbol	Chan	ge			

For **auto-generated** branch points, the **Properties** dialog will display a **Symbol** name of **<Generated Symbol>** with the option to change it for one of your own from the library.

#### **Branch Points – Additional Fetaures**

In schematic you can start and end a connection directly on a new branch point from the context menu using the **Start/End Connection On** option.

	Cancel Insert Connect Finish Here	ion		
¥ đ¥	Type Coordinate Type Offset	= Shift+=		
	Change Style	S		
<b>?</b> ??	Mark Net	F2 H		
~	End Connection On Online ERC	•		Connector Pin Signal Reference Testpoint
	Segment Mode Change Segments	, , ,	~	Branch Point Page Link None
	Change Grid	•		

You can cross probe branch points between Schematic and PCB, and vice-versa.

You can use Auto Rename and interactive rename tool on branch points.

## **Differential Pair Routing**

**Overview of Differential Pairs** 

**Differential Pairs** and **Differential Pair Chains** can be specifically defined at both Schematic and PCB stages. Functionality within Pulsonix allows parameters to be created so that **Differential Pairs** behave and are routed as required. The interactive Differential Pair Routing feature is available in the PCB design editor.



Differential Pairs are defined in Pulsonix using the **Technology** dialog and **Differential Pairs**. Rules can be defined for them, such as how close the tracks should be and how much they are allowed to differ in length as two rule examples. Other rules may be applied to Differential Pairs, such as the default Minimum Gap and Minimum Layered Gap. Rules from other high speed options can also be used, such as overall Track Length of the net and Serpentine Routing.

Once the rules are defined, a special manual routing mode for differential Pairs can be used to route the two track pairs at the same time. Paired track sections are locked together using the rules gap defined in the Differential Pairs dialog. Whilst paired, subsequent editing of the tracks will keep them locked together using the functionality provided.

## **Defining Differential Pairs**

A Differential Pair requires two pairs of pins on two different nets. There are two methods for selecting the nets; you can preselect the two nets by firstly selecting each paired connection in the design (select the first then use <Ctrl-pick> to select the second one). Once in the **Technology** dialog and **Nets, Differential Pairs**, pressing the **New** button will automatically add these two nets as the new 'pair'.

The second method is to use the **Differential Pairs** dialog to select both nets using **First Pin Pair** and **Second Pin Pair** drop down boxes. The drop down list selection allows picking nets and pins on that net within the design. The first method of preselecting the nets is much easier though.



Differential pairs can have a unique name to help identify them. The default name will be constructed from the four pin names, but can be changed to a name of your own choice.

As well as Differential Pairs, you can also defined Differential Pair Chains, these are discussed in more detail later on in the section.

Choose the type of Differential Pair that the pairs are allowed to use; **Edge Coupled** (side-by-side) or **Broadside** (one on top of the other on different layers).

**Allow Track Spurs** – Normally, the path between the pins in a differential pair should be without any spurs or branches to other pads, vias, etc. Checking the **Allow Track Spurs** option will allow spurs from the track path. These spurs must not have any further spurs or branches and should be terminated on a pad, via or testpoint. These will be checked as part of the Differential Pair Design Rule Check and in the Differential Pair report.

## **Differential Pair Attributes**

Differential pairs can have attributes assigned to them for specifying which rules they use. The rules can be added using the **Add** button on the **Differential Pair Rules** dialog or by creating the rule to be assigned on the relevant **Rules** page.

ip Pins	Allow Tra	ack Spurs	:
	Pin: RN40.2 ~		
$\prec$	Swap Pin Pairs		
	Pin: RN40.1 V		
ip Pins	Rules Attributes		
$\sim$	Differential Pair Skew Rules: <differential name="" pair="">=J1.1 Differential Pair Gap Rules: None</differential>	12-F 🔨	<u>A</u> dd
	Track Length Hules: None Track Match Rules: None	~	<u>E</u> dit
	<	>	<u>D</u> elete

## **Differential Pair Gap**

Once the Differential Pair has been created, you may create the gaps that the pair will use. These are defined in the **Technology** under the **Differential Pair Gaps** page.

Attribute:	<differential name="" pair=""></differential>	•	Allow Tracks	
Match:	Q4.1-Q5.1 Q4.2-Q5.2	•		
On Layers				Minimum Gap:
Side:	<any></any>	•		Use Spacing Rule
Name:		•		0.25400
MADEL - A				$\sim$
Within Area	BS:	•		

The gaps can be defined for layers or areas if required. Wildcards are allowed, for example Layer = Inner*

**Allow Tracks** - Use the **Allow Tracks** in conjunction with **Layers** and/or **Area** to create a rule that allows or disallows tracks on that layer or area. You could, for example, disallow differential pairs on Inner layers. This dialog allows you to create a rule for it.

**Minimum Gap** - The Minimum Gap is the distance used when a differential pair is considered paired (i.e. it runs parallel). You can choose to use the **Use the Spacing Rules** to derive the gap, or specify a minimum gap. Note that the gap specified here can be smaller than that derived from the spacing rules.

## **Differential Pair Skew**

The **Differential Pair Skew** page is used to define the **Minimum Percentage** pairing of tracks. An additional new rule defines the **Maximum Length Difference** between the Differential Pair tracks. This defines the 'skew' between the two tracks in the pair.



This feature allows you to add skew to one track of the Differential Pair.



## Pair to Pair Match Lengths

If you need to match a pair of Differential Paired tracks against another set or sets, then you can use the **Track Length Match Rule**. This allows you to define multiple Differential Pairs against each other.

Attribute Name	Match Value	Extra Delay Length	Max Length Difference
<net name=""></net>	Diff*	0.00000	3.81000
<net name=""></net>	HS	0.00000	12.70000
<net name=""></net>	HSE	0.00000	2.00000
<net class="" name=""></net>	PAIR	0.00000	6.35000

Attribute:	<net name=""></net>	$\sim$	
Match:	Diff*	~ 🕺	
			4
			Max Length Difference: 3.81000

## Defining Differential Pair Track Styles

As with other nets, Differential Pair track thicknesses and Via sizes are defined in the **Net Styles** dialog.

	Match Value	Net Type A			Track Styles				Via Styles		
Attribute Name			Area	Track Side	Track Layer	Def. Track	Alt. Track	Fat/Neck Min Len	Via Span	Via Style	V Prot
Net Name>	Diff*				Inner 2	Track (8)	Track (6)	<default></default>		Via (40)	
Net Name>	Diff*			Inner		Track (8)	Track (10)	<default></default>			
Net Class Name>	Diff					Track (10)	Track (8)	<default></default>		Via (40)	
Net Class Name>	GND					Track (55)	Track (25)	<default></default>		PadStyle1	
Net Class Name>	GND2					Track (55)	Track (25)	<default></default>		PadStyle1	
Net Class Name>	HS					Track (10)	Track (15)	2.54000		Via (40)	
Net Class Name>	HS3					Track (55)	Track (25)	<default></default>		PadStyle1	
Net Class Name>	Power					Power (50)	Power (25)	<default></default>		Via (50)	
Net Class Name>	Sio2					Signal (8)	Sional (6)	<default></default>		Via (40)	
Attribute: <pre></pre>	ame>			$\sim$	For Nets of	Type: <an< td=""><td>y&gt;</td><td>$\sim$</td><td></td><td></td><td></td></an<>	y>	$\sim$			
Match: Diff*				~ 🕺	Within	Areas:			$\sim$		
Define Default I	Frack Styles						/ia Defaults				
- For Tracke: -											
						For Vias	with <u>L</u> ayer Sp	an: <any></any>			
On Side:	<any></any>				$\sim$						
or On Lawer	J						Not Allowed				
On <u>L</u> ayer.	inner 2				$\sim$	🗌 Defi	ne Via Protec	tion: 🗹 Del	ete if no	Routed	Reduce Spar
Default Track	Style:					2 Defi	ne Default Vi	a Style			
Name: T	rack (8)				$\sim$						
				Nam <u>e</u> : Via (40) ~							
Width: 0	.20320							- 1			
Alternate Trac	k Style:					Widt	<u>h</u> : 1.0160	0	Shape:	Round	$\sim$
						Long	ale: 1.0160	0	Dell	0 0000	7
Name:	гаск (6)				~	Leng	jui. <b>1.0100</b>	v	<u>D</u> nil.	0.00300	
Width: 0	15240					∠ P	lated				

As well as defining the Track and Via styles to be used, you can also define how the Differential Pair track style will behave on other layers or within areas. This is normal track and via style definition but also equally applies to Differential Pairs where this is critical.



## Using Edge Coupled or Broadside Differential Pairs

You can define how the Differential Pair tracks are 'paired'. **Edge Coupled** are the usual Differential Pairs, the edges of the two tracks separated by the specified gap and appear on the same layer side-by-side. **Broadside** Differential Pairs are paired vertically, the tracks laid on top of each other on different layers. It is possible to allow both types of pairing on a differential pair. The choice of which type to use will depend on your design and the technology being used. Usually you would use one or the other method, but Pulsonix also allows mixing the track pairing methods.

Own Colour:	v	Tracks Are Paired When: Edge Coupled: 🗹 Broadside: 🗌
ap Pins	Pin: RN40.2 V	Allow Track Spurs: 🗌
	Swap Pin P Pin: RN40.1 ~	airs
p Pins	Rules Attributes Differential Pair Skew Rules: <differential <="" differential="" gap="" length="" match="" none="" p="" pair="" rules:="" track=""></differential>	Par Name>=J1.112.F ∧ ⊈dt > Delete

For **Broadside** only coupling, the gap can still be provided and will be used for the minimum separation of the tracks when they are on the same layer, for example when routing out of surface mounted pads but this will not contribute to the % paired.

## **Adding Broadside Differential Pair Tracks**

When adding a Broadside Differential Pair track, using **Start Differential Pairing** will prompt for the **Broadside Clone Layer**. This is the layer that the 'copy' of the track being added will go on.

Change Broadside Pair Track Layer							
Track (Being Edited):							
Net	DIFF1						
Old Layer:	Top Electrical						
New <u>L</u> ayer:	Bottom Electrical						
Broadside Clone							
Net	DIFF2						
Old Layer:	Top Electrical						
New <u>L</u> ayer:	New Layer: Bottom Electrical						
Apply To All Segments							
	OK Cancel						

When using **Start Mirroring Paired Track** if both tracks are attached to surface mounted pads, mirrored tracks will be added, but you will not be able to start pairing yet and the defined gap will be maintained. If you start mirroring from through-hole pads or vias, you will be asked for the layer for the clone and the mirrored track will change to that layer. The mirrored tracks will be allowed to come together and when this happens a click will start broadside pairing, one track on top of the other.

## **Changing Layers of Broadside Differential Pairs**

While using Broadside Differential Pairs, you can change the layer for both the track being edited and its broadside clone at the same time.
Track (Being Edited)								
Net	Add0							
Track Layer:	Тер							
Broadside Clone:								
Broadside Clone: Net:	Add1							
Broadside Clone: Net: Old Layer:	Add1							
Broadside Clone: Net: Old Layer: New Layer:	Add1 Power							

Note: This dialog is sometimes displayed when you can only change the clone layer, for example when starting differential pairing on a broadside diff pair.

#### Switching between Differential Pair types

When adding differential pair tracks that allow both coupling types, you can switch between them using **Switch To Broadside Coupling** or **Switch to Edge Coupling** from the context menu.

ΥΪI	Plain Not	n
	Change Default Via Style	
	End Track On	•
r.	Start Differential Pairing	
⇔	Start Mirroring Paired Track	
	Via Pattern	×
Ŧ.	Switch To Broadside Coupled	
	Start Track Hugging	5
	Match Pin To Pin Length	
	Editing Options	►
	Sagment Made	

This can only be done when not actually adding paired tracks, so you have to un-pair, change coupling type and re-pair again. When switching to Broadside coupling you will again be asked for the layer for the broadside clone track.

Change Broadside Pair Track Layer							
- Track (Being Edil	ed):						
Net:	Add0						
Track Layer:	Тор						
-Broadside Clone:							
Net:	Add1						
Old Layer:							
New Laver	Power	-					
<u>E</u> dyor.	Тор						
	Power Bottom						
	13						

For Broadside coupling the paired length will be calculated where one track is completely over the other, but if both edge and broadside coupling is allowed, both types of paired sections will be added together to give the total figure.

## Routing a Differential Pair

This is how you route Differential Pair tracks:

## To route a differential pair

- 1. There are a number of ways to create differential pairs. We will use the more straight forward method to start with.
- 2. You would have set up your Differential Pairs already using the Technology dialog.
- 3. Begin to start routing from one of the pins in the set (double click on the net). Don't add any corners, the Start Mirror Paired Tracks option only works from the initial track segment off the source pad.



4. In this example, we will move the cursor inwards to create a 45 degree mitre as well. The routing mode is already enabled in **Angled (45)** mode (from the **Options** dialog and **Edit Tracks** page).



5. Right click the mouse and from the context menu, select Start Mirroring Paired Tracks.



6. This will create the initial paired tracks using a mirror image of the first track you routed to start with.



- Moving the cursor closer to the paired track will now bring the tracks together using the Track to Track spacing rule defined in the Technology (or any additional Net Class or Net Styles rules or exception rules added to the net).
- 8. Move the mouse closer to the second track and click to add the first corner, it will not move closer than the **Spacing Gap** defined.



9. Move the cursor towards your end target, click once to add corners just like regular track editing. Changing layers will be demonstrated a bit further on.



- 10. Position the cursor mid-way between the target pads.
- 11. Right click the mouse and from the context menu select Start Mirroring Paired Tracks again.



12. This will instruct this option that you wish to now finish the track pairing in a defined way.



13. Assuming you are still using the **45 Degree Segment Mode**, moving the one track towards the target the other track will 'mirror' this image.



14. With the cursor now over the target, the **Finish** marker will be shown.



15. Click to finish.



- 16. The completed result looks like the above example.
- 17. These two tracks will now behave as a differential pair and will use the rules provided. **Design Rules Check** etc. will also know about these tracked pairs.

## **Changing Differential Pair Layers**

#### To change layer during differential pairing

- 1. During differential pairing you may wish to change layers.
- 2. To do this, right click and select Change Layer from the menu or the shortcut <L>. as normal
- 3. Because you are already in Differential Pairing mode, you can opt to show the position of the vias and the next track segments.
- 4. Once your routing has been started (using Start or Mirror Differential Pairs), right click.



5. To show the vias, select the **Via Pattern>** option from the context menu.



- 6. At the bottom of the sub-menu, select Show Via Pattern.
- 7. Now when you route, the via pattern and track positions will be shown. These will move dynamically with the routing to show their position if used.

8. These are shown as outline shapes for clarification. The larger circles will indicate the Via position, the smaller circles indicate the next start position of the tracks on the other layer.



- 9. The via and track positions will depend on the via and track grids and the **Spacing Rules** defined in the **Technology**.
- 10. Also from the context menu, you can select the type of via pattern to be generated during a layer change.



11. The patterns will be applied to subsequent routing after selecting from this menu so it is possible to use multiple-pattern types if required.

Alternative method for starting Differential Pair Routing

## Alternative method of starting differential pair routing

1. An alternative method to create differential pairs is to start the routing, then from the context menu, select **Start Differential Pairing**.

	ĩ,	Start Differential Pairing			
	⇔	Start Mirroring Paired Track			
		Via Pattern	→		
		Start Track Hugging			
		Editing Options	•		
DIFF1		Change Segments	•		
		Online DRC	1		
		Display Clearance			
		Push Tracks			
		Change Grid	•		

- 2. Any routing in this current session you add now will be paired.
- 3. Use the End Differential Pairing mode form the context menu to exit this mode.

**Differential Pair Routing Functionality** 

### **Drop Via**

When adding a PCB track (or differential paired track), there is a new option on the context menu to **Drop Via**. This operates the same as **Change Layer**; adding a via at the end of the track but for this option, not changing the layer of the new track. A via is added along the track as you edit, thus enabling the continuation of the track after the via is dropped.

This is also available when adding differential pairs where it adds two vias with the appropriate track patterns to them, but not changing layer. This is useful when using DDR2 or DDR3 flyby routing to drop a via pair near each target pad pair, ready to be routed later.

đΫ	Type Offset	Sniπ+=					
	Finish On Via						
	Complete As Track						
	Change Layer	L					
	Next Layer						
	Previous Layer						
8	Drop Via	N					
	Change Style	S					
	Change Default Via Sty	/le					
Z.	End Differential Pairing						
⇔	Start Mirroring Paired T	rack					

## **Finish On Via**

The **Finish On Via** option is available when adding differential paired tracks. Use it to finish a paired section on vias, you may need to do this if creating a branch point for multiple-connected differential pairs. It was always available when adding a single PCB track, but is also available when adding differential paired tracks.

Cancel Add Track	
Exit This Mode	
Finish Here	
Type Coordinate	=
Type Offset	Shift+=
Finish On Via	
Complete As Traek	
Change Lawer	1
	Cancel Add Track Exit This Mode Finish Here Type Coordinate Type Offset Finish On Via Complete As Track

#### **Removing Differential Pair Routing**

A paired section of track (or a selected part of it) can be unpaired using the context menu command **Remove Differential Pairing** whilst in select or edit modes on the selected track.



You can create any number of paired sections of track along the path but you must complete the gaps manually.

### Acid trap removal using Minimum Allowed Gap Spacing Rule

During Differential Pair routing, when performing a **Layer Swap** using the **Parallel** pattern, the Acid Trap rule defined will be used. Using a combination of the **Minimum Allowed Angle** and the **Minimum Allowed Gap**, you can control the removal of acid traps.

These values are defined in the **Technology** dialog under **Spacings**, **Design Level** and the **Track** tab. Under the **Acid Traps** rule, you can change the values of the **Minimum Allowed Angle** and **Minimum Allowed Gap** to that required.



To utilize this fully, an angle entered for the **Minimum Allowed Angle** will control the acid trap removal to ensure that the track entry to the via will conform to this rule. If you require additional control, you can specify the **Minimum Allowed Gap** also. This will mean that if the angle is violated, the track will then be backed off by the gap defined. If the gap is set to zero, the minimum required to remove the violation will be applied.

## **Defining Differential Pair Colours**

You can draw **Differential Paired Tracks** in a different colour using the **Colours** dialog and **Highlights** page. These are in addition to the normal **Track** and **Net** colours which can also apply to Differential Pairs.

Name	Displayed	Colour
Attached Dimensions/Callouts		
Branch Point Via		
Bus Tracks		
Clearances		
Component Pad 1		
Differential Pair Path		
Differential Paired Tracks	$\overline{\checkmark}$	
Highlight		
Highlight 'Fail'		
Highlight 'Pass'		
Highlight 'Unchecked'		
Highlight 'Warning'		
Locked Track Segments		
Marked Mat		

Differential Paired Tracks defines the colour of paired tracks in a Differential Pair.

**Differential Pair Path** defines the colour of the pad to pad path of tracks and connections in a Differential Pair. An individual Differential Pair colour can be defined from within the **Technology** dialog and **Differential Pairs** page.

### **Differential Pair Routing Options**

Check boxes are available on the **Options** dialog and **Interaction** page are available for **Differentially Paired Tracks and Bus Routes**:

Vithen Adding Tempi	lates <u>P</u> our On Add	Cursor Tex Offset
Differentially Paired Whilst Editing:	Tracks and Bus Routes ☑ Keep Correctly Paired ☐ Show Centre-line	Auto Foot

## **Keep Correctly Paired**

When checked, the **Keep correctly Paired** option will not allow doubling-back and acute corners when adding or editing paired tracks. This avoids the tracks ending up curved or further apart than the required gap. Uncheck it to allow full movement (as in previous releases). It may be that allowing illegal pairing during an edit is the only was to get to the actual position required.



Without **Keep correctly Paired** checked. Tracks are allowed to be edited in illegally.



With **Keep correctly Paired** checked. Tracks are restrained to not allow an illegal path.

#### **Show Centre-line**

When checked, the **Show Centre-line** option is used to show the line between the paired tracks that you are actually editing. The centre line is the grid position that the differential paired tracks are following. This visual indication helps ensure the tracks are in the correct position and shows the selected dynamic segments.



The line is removed as soon as the edit, move or move corner is complete on the differential pairs.

#### Automatically starting Diff Pairs as Mirrored

You can define if a Differential Pair is mirrored by default when the pair routing is started.

The option is on the context menu when in Insert Track for a Differential Pair. It is also available in the options sub menu on the context menu when editing the track.



With the option enabled, when you then start routing, the differential pair will be immediately mirrored.



# **Differential Pair Chains**

### Why Diff Pair Chains?

Differential Pairs can also be placed into 'chains' to create extended net paths without the nets requiring the same net name. A Differential Pair may, for example, terminate on a resistor but require the overall length of the tracks to include the other side of the net. Differential Pair Chains can be more than two pairs of Differential Pairs if required.



From the **Differential Pairs** dialog you can use the **New Chain** button to define a **Differential Pair Chain**. If your design only contains one pair of defined differential pairs, then selecting this button will display a warning that more than one pair is required.

Name	Chain Link		First Pin Pair		S	econd Pin Pa	ir	lise Own Colour	<u>N</u> ew
Marrie	Name	Net	Start Pin	End Pin	Net	Start Pin	End Pin	use own colour	
Diff1-b	6 8 8 8 8 8 8 8 8	DIFF1	Q7.2	R35.2	DIFF2	Q4.2	R34.2		New Chain
N050		N050	Q2.2	R20.2	FAT	Q2.1	C16.2		
Diff Chain1	- - - - - -		Q4.1	R36.2		Q4.2	R37.2		
	Diff1	DIFF1	Q4.1	Q5.1	DIFF2	Q4.2	Q5.2		Delete
	Diff2	DIFF1	R36.1	Q5.1	DIFF2	R37.1	Q5.2		
	Diff3	Diff3	R38.1	R36.2	Diff4	R39.1	R37.2		

The process is to choose a Differential Pair to make a chain from, then add additional Differential Pairs to create a chain. After pressing the **New Chain** button, the **Choose Differential Pairs** dialog is displayed:

Choose Differenti	al Pairs To Add To The Chain	$\times$
<u>D</u> ifferential Pairs:	Branch1-U17.D3 Branch2-U17.C3 (1) Branch3-U10.D3 Branch3-U9.D3 (2) Branch4-U9.C3 Branch3-U9.D3 (2) in chain: J1-U9 (2) J1.101-RN33.1 J1.102-RN33.2 (2) in chain: J1-U9 (2) RN33.4-Branch3 RN33.3-Branch4 (2) in chain: J1-U9 (2)	

From this, choose the pairs of pins to add to the chain, this can consist of more than two pairs. Drag the mouse to select more than one or use the standard **Ctrl** or **Shift** keys to make multiple selections.

With a new Chain defined, the lower portion of the Differential Pairs dialog now changes to a **Chain** image to allow you to define the chain pair.

Name		Fi		First Pin Pair Se		econd Pin Pair		llee Own		Edge		Allow		<u>N</u> ew
	Chain Link Name	Net	Start Pin	End Pin	Net	Start Pin	End Pin	Colour	Colour	Coupled	Broadside	Spurs	Attrib	New Chain
J1-U8 (1)	1		J1.112	U8.D3		J1.111	U8.C3							
	J1.112-RN40.2 J1.111-RN40.1 (1)	RDQS7	J1.112	RN40.2	RDQS7B	J1.111	RN40.1			$\checkmark$				
	RN40.3-Branch2 RN40.4-Branch1 (1)	DQS7	RN40.3	Branch2	DQS7B	RN40.4	Branch1							Delete
	Branch1-U8.D3 Branch2-U8.C3 (1)	DQS7B	Branch1	U8.D3	DQS7	Branch2	U8.C3							_
J1-U9 (2)			J1.101	U9.C3		J1.102	U9.D3							
	J1.101-RN33.1 J1.102-RN33.2 (2)	RDQS6B	J1.101	RN33.1	RDQS6	J1.102	RN33.2					Π		
	RN33.4-Branch3 RN33.3-Branch4 (2)	DQS6B	RN33.4	Branch3	DQS6	RN33.3	Branch4							
	Branch4-U9.C3 Branch3-U9.D3 (2)	DQS6	Branch4	U9.C3	DQS6B	Branch3	U9.D3							
J1-U10 (2)			J1.101	U10.D3		J1.102	U10.C3							
	J1.101-RN33.1 J1.102-RN33.2 (2)	RDQS6B	J1.101	RN33.1	RDQS6	J1.102	RN33.2							
	RN33.4-Branch3 RN33.3-Branch4 (2)	DQS6B	RN33.4	Branch3	DQS6	RN33.3	Branch4					Π		
	Branch3-U10.D3 Branch4-U10.C3 (2)	DQS6B	Branch3	U10.D3	DQS6	Branch4	U10.C3	Π						
J1-U17 (1)			J1.112	U17.D3		J1.111	U17.C3							
	11 112 DNA0 2 11 111 DNA0 1 (1)	DDOS7	11 112	DNA0 2	DDOS78	14 444	DN//0 1						`	,
<													>	

Diff Pair Chain: J1-U8 (1)		
Pin: 11.112	Pin: U8.D3	
Pin: J1.111	Pin: UBC3	
Differential Pairs In The Chain: J1.112-RN40.2 J1.111-RN40.1 (1) (RN40.3-Banch2 RN40.4-Branch1 (1) Branch1-U8.D3 Branch2-U8.C3 (1)	Add     Rules     Attributes       Remove     Differential Par Skew Rules: None Track Length Rules: None     Add       Up     Track Match Rules: Length Metch=J11U8;9;10:171_[Max Diff: 1:0001     Edit       Down     Net Styles: None     Ue	I :

Selecting a Differential Pairs will toggle the image in this dialog between a standard Differential Pair and a Chain.

Additional buttons on this dialog allow you to manage selected Chains. Use the **Add** and **Remove** buttons to select more Differential Pairs to add to the chain or to remove exiting pairs. The **Up** and **Down** buttons allow you to change the order in which the Pairs appear in the chain. The chain name is derived from the first and last pair it finds in the list. It may also be that you add pairs to the chain out of sequence and these buttons allow you to re-sequence them. The order in the list is also used in the **Rules Spreadsheet**.

#### **Deleting Differential Pair Chains**

**Differential Pair Chains** cannot be deleted without first removing the **Differential Pairs** within them. This allows you to remove some pairs and not others from the chain.

Using the **Remove** button, each of the Differential Pairs must be removed.

Differential Pairs In The Chain:	
J1.112-RN40.2 J1.111-RN40.1 (1) RN40.3-Branch2 RN40.4-Branch1 (1)	Add
Branch1-U8.D3 Branch2-U8.C3 (1)	Remove
	Up
	Down

Once this has been completed and there are no more Differential Pairs shown in the chain, the **Delete** button on the dialog is then available to delete the **Chain** name.

			First Pin Pair Second Pin Pair		Pair			<u>N</u> ew		
Name	Chain Link Name	Net	Start Pin	End Pin	Net	Start Pin	End Pin	Colour	Colc	New Chain
Branch1-U1		DQS7B	Branch1	U17.D3	DQS7	Branch2	U17.C3			
Branch3-U1		DQS6B	Branch3	U10.D3	DQS6	Branch4	U10.C3			
J1-U8 (1)			J1.112	U8.D3		J1.111	U8.C3			Delete
	J1.112-RN40.2 J1.111-RN40.1 (1)	RDQS7	J1.112	RN40.2	RDQS7B	J1.111	RN40.1			
	RN40.3-Branch2 RN40.4-Branch1 (1)	DQS7	RN40.3	Branch2	DQS7B	RN40.4	Branch1			
	Branch1-U8.D3 Branch2-U8.C3 (1)	DQS7B	Branch1	U8.D3	DQS7	Branch2	U8.C3			
14 110 (2)			14 404	110.02		14 400	110 02			

# Length Based Rules

## Interactive Net Length Indicators

The interactive net length indicators allow you to display length rules in the PCB Design. The rules can be defined in the Schematic and passed through to the PCB during the translate stage. In the PCB design interactive track editing displays the rules as restriction boundaries and a head-up display.



Options to Display Track Length Indicators

## **Options for displaying Net Length Rules**

The colours for the **Legal** and **Illegal** track lengths can be defined in the **Options** dialog under **Track Length Limits**. Using **Show Limit Shapes**, the display of the length indicators can also be switched on and off.

Show Track Length Limits
Legal:
<ul> <li>✓ Show Limit Shapes</li> <li>✓ Show Limit Text</li> </ul>
Use Cursor Text     Draw Text 125.00

## **Track Length Limit Shapes**

The Min and Max values can be displayed as numerical figures but also shapes. Coloured shapes indicate the extents of the limits.



In the illustration above, the red box 'inside' the green box indicates that the minimum length has not yet been met, the green box indicates the extents to which the track must be routed to meet this. Once the min limit has been met, the red box then changes to be outside of the green shape to indicate the outer max limit of the track. These shapes change dynamically as the track us routed.

#### Track Length Limit Text (head-up display)

As well as the visual indicators for legal and illegal values, the actual rule values used can also be displayed using the **Show Limit Text** check box.

Legal:	v Limit Shapes	0
Show	v Limit Text Use Cursor Text Draw Text with Size: 125.00	Q6.3 to Q5.3 Est 1180.60 Max 1100.00 Min 750.00

The **Use Cursor Text** option displays the limit text similar to a tooltip always on top of your design keeping it more legible especially in dense areas of the design. You can alter the distance the text box is from the cursor using the **Options** dialog and **Track Length Limits** page. You can also use the **Reposition Cursor Text** command whilst cursor text is being displayed to change its position relative to the cursor.

The **Draw Text** option simply draws the limit text in the design window. You can specify the height of this text in the current design units. This is the actual height on the screen and is not related to the current drawing scale of the design.



tions - Track Length Li	nits
Design Backups	Show Track Length Limits
Edit Track	Legal:
Edit Shape	
File Extensions	Show Limit Shapes
Find	Show Limit Text
General	
In-Place Names	<ul> <li>Use Cursor Text</li> </ul>
Interaction	O Draw Text with Size: 3.04800
Move	
Macros	Only Show Pin to Pin Length if Rule Defined
Multi-Screen	Only Show Net Length if Rule Defined
Online DRC	
Resolve Net Names	Unity if Pin to Pin Rule Not Defined
<ul> <li>Track Length Limits</li> </ul>	Only Show Diff Pair Length Diff if Rule Defined

'Only Show' Rules

Use the three **Only Show...** text boxes to decide if you always want to show the appropriate length, or only show the text if there is a maximum or minimum length limit rule defined. If you are only showing the net length if there is a rule defined, you also choose if you want to display this as well as the pin to pin length or only if the pin to pin length is not displayed.

The Pin to Pin length is the sum of all tracks and unrouted connections in the path between the pins. All unrouted connections have their length estimated assuming they will be routed using the angled segment mode, except the connection at the end of the track being added that might instead use the orthogonal length or direct connection length depending on the current segment mode.

### Track Length Rule

The **Track Length Rules** page enables you to control the length limits of the overall track length and the pin to pin lengths required. You can define **Min** and **Max Track Lengths which** can be applied to any Net-based items and as Attributes to the items. Within this rule there is a sub-category to define separate rules the **For Nets And Sub Nets Apply Rule To:** can be selected for the **Total Track Length** or for the **Maximum Pin To Pin Track Length**. You can have the same rule contain both of these sub-categories but they must be defined twice, once for each rule.

		Total Tra	ck Length		For Nets and Subnets Apply Rule To			
Attribute Name	Match Value	Minimum	Maximum	Max Vias	Total Track Length	Pin To Pin Track Length		
<differential name="" pair=""></differential>	Diff	33.02000	44.45000	2		Image: A start of the start		
Track_Length	HS	5.08000	81.28000	2	~			
<net class="" name=""></net>	HS1	63.50000	76.20000	<unrestricted></unrestricted>				
<net class="" name=""></net>	HSE	8.00000	14.00000	1				
<net class="" name=""></net>	PAIR	38.10000	45.72000	<unrestricted></unrestricted>				
<net class="" name=""></net>	Sig2	19.05000	27.94000	2				
<net class="" name=""></net>	Signal	2.54000	17.78000	<unrestricted></unrestricted>				
	HS1	6.35000	12.70000	<unrestricted></unrestricted>				
	Pin_Order	19.05000	27.94000	2				

Attribute: _🗸	Total Track Length:
Match: HS1 🗸	Min: 6.35000 Max: 12.70000
For Nets And Subnets Apply Rule To:	
◯ Total Track Length	
Maximum Pin To Pin Track Length	Max Num of Vias: <pre></pre>

When the **Track Length rule** has been defined for a **Net item** or **net attribute**, during editing, a coloured graphical shape is displayed indicating the track length limits based on the rules defined.

Separate shapes are drawn to indicate minimum and maximum track length rules.



length set. Parameters for defining the display of the length rules can be set in the **Options** dialog and **Track Length Limits** tab.



Show Track Length Limits

Check this option to show length limit shapes or text in general. Whilst using **Edit Track**, the length limits can also be turned on or off using the shortcut menu **Editing Options - Show Track Length Limits**.

The text and shapes are colour coded to show **Legal** and **Illegal** values. Green and Red are the defaults, but you can use any colours.

When you are within the maximum track length limits, the limit shape or text is drawn in the legal colour. When the maximum limit is exceeded, the shape or text is drawn in the illegal colour and the shape will grow as the excess increases. Minimum limits are always drawn in the illegal colour in a dashed style, until the minimum is exceeded, when the shape is not drawn.

#### Show Limit Shapes

Limit Shapes give you a visual indication of how far the track can extend and still be legal. You should be able to legally reach any point between the inner and outer shapes



#### Show Limit Text

The limit text gives information about the current estimated length and length limits that apply.

**Use Cursor Text**, uses the system defined tooltip font and text size. The text has a background box drawn in the current background colour.

**Draw Text with Size**, inbuilt font drawn at the given text size. The size is given in the current design units, but you can specify other units on input (e.g. 3mm). The text has no background so improves visibility of surrounding items at the expense of readability.

You can alter the distance the text box is from the cursor using the **Interaction Option - Cursor Text Offset From Cursor**. You can also use the **Reposition Cursor Text** command (available from the context menu - Editing Options), which shifts the cursor text into the next quadrant.

#### Pin to Pin Length

The Pin to Pin Length is the track length between the two *nearest* **Component Pins** or **Branch Point** by tracking a path from each end of the connection being edited. This length will follow through vias. The names of the two pins will be show along with the length.

You can choose to **Only Show Pin to Pin Length if a rule is Defined** which limits the length of the Pin to Pin connection.

#### Net Length

The Net Length is the total track length within the current net.

You can choose to **Only Show Net Length if a rule is Defined** which limits the length of the Net. More specifically, you can choose to Only Show Net Length **If a Pin to Pin Rule** is defined which limits the length of the connection.

#### **Differential Pair Length**

The length of a Differential Pair is the track length of the path between the start and end pins of the selected *side* of the pair.

You can choose to **Only Show Differential Pair Length if a rule is Defined** which limits the length of the Differential Pair.

#### Length Rules

You can define **Track Length Rules** (explicit length limits) and **Track Length Match Rules** (length Limits defined by comparing with other lengths) in the technology.

You can also define track length limits on a Pin Network Part.

You can also show pin to pin length limits without rules being defined in the technology by using the **Match Pin To Pin Length** option when editing tracks.

#### How Limits are Calculated

The connection you are editing may be part of a number of length limited items. The lengths and applied rules are evaluated for all of these, and the most limiting rules are found. The rule which most limits the minimum length may not be the same rule which most limits the maximum length. The two most limiting rules are the ones which are displayed. It could be possible that the minimum and maximum are such that it is impossible to satisfy both without making wider changes to the design.

#### How the Lengths are Calculated

The lengths are calculated by adding the lengths of all the tracks which make up the Total or Pin to Pin Length of the length limited item (as required for the rule being evaluated). Unrouted sections, or trailing segments are estimated using a 45 degree plus orthogonal projection. Length adjustments are also applied using **Track Length Factor Rules**, **Layer Change Length Rules** and **<Pin Package Length> Attribute** on a pad.

#### Track Length Match Rule – Sub Nets

An additional option is available for the **Track Length Match Rule**. It is present when the <Sub Net Name> attribute has been selected from the drop down and displays an additional check box for **Only Match Sub Nets Within the Same Net**.

This allows you to say only match a sub net with other sub nets in the **same net**. You would select this if having copied an identical section of circuit that has sub nets within it. Leave it unchecked to match the length of all matching sub nets in any net.



# **Track Length Match Rule**

The **Track Length Match** rule is used to define length differences between different nets. You could 'cluster' nets and associate them using an attribute name which can then be matched or you can use standard design items such as <Net Name>, <Diff Pair Name>, <Net Class>, <Signal Path Name> and <Sub Net Name>. You can also add a net attribute to provide a tag to add to any required nets.



The **Match Length Difference** value is the maximum length difference (or skew) between any item in the match group.

Use the **Extra Match** button to add an extra match group to the currently selected group, this adds a new line to the grid. The **Attribute Name** cell is blank because it is the same as the first line, but you must add a different **Match Value**.

### Extra Match

The **Track Length Match Rule** also has ability to add **extra match** strings to it. Use the Extra Match button to create extra rows for the current Match rule. Using this, enables you to directly define a rule for two net names for example without having to use complicated match strings.





When the **Extra Match** rule is set to zero, this means simply ensure that the explicit nets are matched using the Max Length Difference. If, however, an explicit override rule is required, then the **Extra Delay Length** can be assigned (see below).

#### Extra Delay Length

The **extra match** strings can also have an optional **Extra Delay Length** assigned to them. This is done using the extra match button but then using an explicit **Extra Delay Length** value. This means the extra match item(s) must be that length longer than the base match item to satisfy the rule. The value can also be negative meaning it must be shorter that the base item.

Attribute Name	Match Value	Extra Delay Length	Max Length Difference
Length Match	RDQ48-59	0.000	1.000
<signal name="" path=""></signal>	*Branch*	0.000	0.500
Length Match	J1[U8,9,10,17]	0.000	1.000
<net name=""></net>	DM6	0.000	1.100
	DM7	2 000	



# Layer Change Length Rule

Applies To:

Pads Vias

The Layer Change Length Rule allows you to add an extra length to vias or pads using a layer span rule. By default, track lengths are calculated without taking any account of this additional length. These rules allow you to specify this. This rule can be used in conjunction with the Track Length Rules or Track Length Match Rules.



**Applies To:** - this enables you to specify whether the rule applies to only **Pads** or only **Vias** or both. You cannot have both check boxes not selected.

**Extra Track Length**: - this allows you to specify the rule. By using the layer span, you can define a thickness that gets added to the overall track length. This additional length can be derived using the layer **Material** thickness and layer setup from the **Layers** dialog or can be specified directly as a typed value by unchecking the **Use Layer Thickness** check box.

## Extra Length Rule through Pin Package Attribute

As well as the general **Layer Change Length Rule** that can be added to layer spans, Pulsonix also provides you with a built-in **Pad Attribute** that can be used on a pad. The attribute <Pin Package Length> can be used to define a pin length or the internal length between two pins say, for a Signal Path to add extra length to the overall track length for **Pads** or **to define an internal length within a component** (the pin package length). This rules comes into effect particularly where bus clock speeds of 500Mhz or above are being used. It is used to add extra length to the net length calculations

There isn't a Rule page for this but it fits here in relation to the above Layer Change Length Rule.

The extra length is defined on an IC manufacturer's datasheet and defines a pins internal package length. The internal bond wire to the die introduces a delay to the signal. This delay information can usually be found in the IBIS 6 document for the device.

Within the design, the **<Pin Package Length> attribute** can be added to any pads or in Parts if you wish to account for internal package lengths. It should be added using **Properties** of a **Pad**, **Pad Attributes** and adding the **<Pin Package Length> attribute** plus a length value. The **Value** should also have units defined otherwise the current design units will be used. This could be a problem if swapping design units dynamically and the wrong length being used. The value should be the length of the continuation of the net inside the package.

Va	niants	Vault	Net		Net Attributes		
Pad	Pad Attributes	Test	Component	Nets on Pins	Comp Attribute		
	New Attri	bute			X <u>N</u> ew		
	Name:	<pin packa<="" td=""><td>ge Length&gt;</td><td>~</td><td><u>E</u>dit</td></pin>	ge Length>	~	<u>E</u> dit		
	Value: 1 mm						
					•		
			9	Substitute Attribute	e		
		01					

# **Track Parallel Segments Rule**

A rule is available in **Rules – High Speed** for defining **Track Parallel Segments**. This is used to define the maximum length of two parallel segments. You can also define the minimum gap between the parallel tracks. Both rules can be used on the same or adjacent layers.

Check Segments On					Against Parallel	Segments On	Parallel Track Segments		
Attribute Name	Match Value	Side	Layer	Area	Attribute Name	Match Value	Between Adjacent	Min Gap Between	Max Parallel Length
<net name=""></net>	DQ*	Outer			<net name=""></net>	ż		<unrestricted></unrestricted>	3.00000
<net name=""> 🗸</net>	DQ*	Inner			<net name=""></net>	*		<unrestricted></unrestricted>	2.75000

Attribute:	<net name=""></net>	$\sim$	
Match:	DQ*	~ 🕺	Maximum Parallel Length: 2.75
On Layers	3:		
Side:	Inner	$\sim$	
Layer:		~	Minimum Gap:
Within Area	as:	~	·
Against Par	allel Segments On:		Between Adjacent Layer
Attribute:	<net name=""></net>	$\sim$	
Match	•	~	

If the **Minimum Gap** is left undefined <Unrestricted>, it will use the default Track to Track spacing rule defined in the **Spacing Rules** dialog.

You can also define multiple rules between two sets of tracks with increasing minimum gaps.

Check Segments On				Against Paralle	Parallel Track Segments				
Attribute Name	Match Value	Side	Layer	Area	Attribute Name	Match Value	Between Adjacent	Min Gap Between	Max Parallel Length
<net name=""></net>	DQ48				<net name=""></net>	ż		0.100	15.000
<net name=""></net>	DQ48				<net name=""></net>	2		0.150	17.000

#### How the rule works

For the example below, the rule is: if the two tracks are within the minimum gap of 0.100mm, you cannot have a run of longer than 15.00mm



# **Necked Length Rule**

Where designs require restrictions applied for the min and max lengths of necked lengths, these can be defined in the **Necked Length Rules** dialog.

					Area Max Necked Width Minimum Maximu	Length	
Attribute Name	Match Value	Side	Layer	Area		Minimum	Maximum
<net name=""></net>	HS*	Outer			0.10000	2.50000	3.50000

Attribute:	<net name=""> ~</net>	
Match:	HS* 🗸 🕺	Necked Length: Min: 2.5 Max: 3.5
On Layers		4
Side	e: Outer 🗸 🗸	
Laye	r: 🗸 🗸 🗸	Maximum Nackad Witth: 0 100
AADI - A		
vvitnin Area	35:	

**Minimum & Maximum Necked Length** defines the minimum and maximum lengths that a track can be necked in a single run before ending or returning to a width thicker than the Maximum Necked Width.

The **Maximum Necked Width** defines the maximum track width that is considered necked. This is an actual width regardless of the default track styles of the actual track style used.

# **Serpentine Routing**

## **Fixed Rule Serpentine Routing**

For balancing the length of high speed nets is the insertion of track 'length' without introducing spacing errors. This is commonly known as **Serpentine Routing**. Serpentine Routing can be applied across 90 degree or 45 degree track segments. It can also be applied to differential pair routing (shown below, right).



You can select a track segment (or segments) and run the **Serpentine Routing** command from the context menu which prompts for the serpentine parameters. Parameters are defined for the amplitude and separation of each loop. You can also define the minimum number of loop cycles to insert, and also the amount of additional length required (otherwise it will do as much as possible).

Serpentine shapes and parameters are defined in the **Technology** dialog and **Serpentine**. If you require length rules to be applied to the tracks, then also other rules available such as **Track Length Rules**, **Track Length Factor Rules** and **Track Length Match Rules**.

## Serpentine Routing Shapes

Using the **Shape:** drop down list, you can choose from different styles of serpentine shapes available or you can customize the ones available to create a variation of these.

## **180 Degree Curved**

**180 Degree Curved** will produce a standard serpentine with curved corners. This presets the **Mitre Ratio** to 1.0 and produces 180 degree curved corners. If the **Curved** button is unchecked, it will produce an Octagonal serpentine around the top of the loop although, because it has been 'customised', it will show as User Defined.

Attribute Name	Match Value	Min Amplitude	Max Amplitude	Separation	Min Cycles	Shape	Curved	Mitre Ratio
<net name=""></net>	*	100.0	200.0	10.0	1	180 Degree C	$\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{$	1.000000



You can define two amplitudes that it can use to automatically reduce the amplitude to avoid obstacles, shown below.



## Octagonal

Octagonal produces a serpentine with the 45-degree mitre and flat 'top' lengths the same value.



## Sawtooth

The Sawtooth shape allows you to define **Min** and **Max amplitude** as well as **separation**. Changing the **Mitre Ratio** will adjust the sawtooth shape allowing more 'flat' spots on the waveform.



## Trombone

The **Trombone** style breaks into the track and edits it into the trombone shape. The pictures below show the track before serpentine routing and after:





Two styles are available for Trombone - Octagonal and Curved.





Check the Curve button to toggle between Octagonal to Curved shapes.

#### **User Defined**

If the value is set to a value not matching the above cases, the shape drop down is displayed as **User Defined**.

### **Shape Parameters**

You can define the serpentine with parameters that control the Amplitude and shape of the mitred corners. Mitred or curved corners can range from 180 degree curves to 90 degree corners.



### Shape

You can control the shape of the top of each loop. The mitre around each turn can be curved or straight, and the size of the mitre is defined by the **Mitre Ratio**, which is the proportion of the 90 degree corner taken up by the mitre. A value of 1.0 gives a complete 180 degree curve (or *sawtooth* if straight) around the top of the loop; a value of 0.0 gives a squared off top to the loop; values in between give a loop of two curves or 45 degree angled lines with a flat top between. The default is **Curved** with a **Mitre Ratio** of 1.0, which results in 180 degree curve around the loop.



A **Mitre Ratio** of 0.585786 and straight mitre gives an octagonal shape around the loop (angled mitres and flat top with the same length).

#### **Remove Serpentine Routing**

From the context menu, for a selected track the **Remove Serpentine Routing** feature can be used to remove a selected section of serpentine routing. It can also be used to remove all serpentine routing from the design.



## **Reducing Serpentine Routing**

Also on the context menu is the **Reduce Serpentine Routing** feature to reduce a selected section of serpentine routing by one 'loop'. This enables it to be easily trimmed to the correct length without interactively editing the track.

# **Dynamic Serpentine Routing**

Serpentines tracks can be created and edited using the interactive serpentine tool. The serpentine track can be added by selecting and dragging along a track and automatically finishing once the correct length is met. This can be done once a track has been added to the design to increase or decrease its length. Obstacles will be avoided with Online DRC enabled; the serpentine tool will increase/decrease its size around obstacles. Interactive Serpentine will work continuously around angled and curves.



To facilitate this, the **Add Dynamic Serpentine** mode is available on the context menu for a selected track segment. This mode can also be assigned as a command to a shortcut key for fast deployment.



This mode can also be invoked from the Utilities menu, Serpentine >, Serpentine Mode option.

You can interactively add a serpentine by dragging along a track and automatically finishing when the correct length is reached. You can edit a serpentine to change its size, but still adhere to a length rule. With Online DRC switched on, the serpentine reduces its width in places to avoid obstacles, and pushes tracks out of the way if it can.

Once a track has had a serpentine applied to it, that serpentine is remembered by the system and can subsequently be edited with all rules and values available.

The dynamic serpentine mode can be applied to Tracks and Differential Pairs, as well as one track of a Differential Pair to create a 'skew' (this requires the **Differential Pair Skew Rule** to be defined in the **Technology**).

## Differential Pair Routing - Fillet Mode

While routing Differential Pairs, you can switch **Segment Mode** to use one of the two routing modes that allow you to add Fillets: **Orthogonal (Fillet)** and **45 Angled (Fillet)**.





When using 45 Angled (Fillet), you can produce Differential Pair tracks with smooth filleted corners.

Fillets can also be applied to Differential Pairs on existing tracks that are already routed by selecting the corner and using **Edit Mitre** from the context menu. The Mitre used (45 degree or Fillet) will depend on the setting using from the **Tools** menu, **Auto Mitre**, **Auto Mitre All**. Both **Curved Mitres** and **Any Angle** should be enabled.

Auto Mitre All		×
Curved Mitres	Maximum Mitre Size: Minimum Mitre Size:	1.270 0.320
Mitre	Apply Settings	Cancel

Mirror Differential Pair routing from Angled Components

Differential Pairs can be routed out of pads at any angle.



Do this by start mirroring a Differential Pair track from two pads that are at an odd angle to each other (not a multiple of 45 degrees), you will be presented with a warning dialog asking if you want to enter **Restrictive Movement** mode to add segments that are perpendicular to the line through the start pads.

Question		×
The start items are on a 145.0 degree angle line. Do you want to use Restricted Movement segment mode to add segments perpendicular to this line? In this mode you will be able to add one segment at a time until you switch Restricted Movement off using the context menu.	^	Yes No Report
	~	Warnings <u>O</u> n/Off

Choose **Yes** to do this. The restrictive movement angle will be automatically set and the track segments will be at the correct angle. If this is an operation you do often on non-45 degree components, then you can switch this massage off using the check box on the dialog.

#### Using this mode

After cornering, the mode stays and you can turn in 45 degree steps relative to the start angle. When close together and you click, it will enter adding paired tracks still in the restrictive mode. Add a segment or two and then use the context menu to switch **Restrictive Movement** off and now you can add the segments in your normal segment mode.

Choose **No** to the dialog to add the mirrored segments in a direction that is a multiple of 45 degrees closest to where you clicked to start mirroring. (This is how Version 9.1 and previous versions worked).

Note: **Restrictive Movement** mode always allows you to turn a multiple of 45 degrees now. In 9.1 this only worked if you set the angle to zero.

#### Serpentine Skew Modes on Differential Pairs

#### Selection of single track on a differential Pair

When a single track segment of a Differential Pair is selected, when using the **Dynamic Serpentine** mode, regardless of the position of the cursor relative to the 'other' Differential Pair track, the Serpentine will be applied to the selected segment.

#### Serpentine Skew Modes on Differential Pairs

When using the Serpentine mode for Differential Paired tracks you can adjust the pair biasing. Selectable from the context menu, this enables you to bias the track upwards so that the bottom track is not affected, to centre the bias around both tracks of the pair and to bias the serpentine track to the bottom and to have the bottom paired track move to allow space for routing.



Biased Top

Biased Both

Biased Bottom

# **DRC Checks for High Speed Rules**

Spacing 🚽	🗌 On Grid	Manufacturing	✓ Nets
Tracks	🗹 Tracks	Isolated Copper	Single Pin Nets
🗸 Vias	🗹 Vias	Unpoured Templates	Net Connectivity
🗹 Pads	🗹 Test Points	Split Plane Pad	Power Planes
🗹 Mount Holes	Components	Plane Thermal Pad	Unfinished Track
🗹 Test Points	🗹 Pads	Bond Wire Length	🗹 Track Layer
Copper		Wire Cross	🗹 Track Width
🗹 Text	Keep In/Out	Wire Under Component	🗹 Via Size
Board 🖉	🗹 Tracks	Drill Backoff	🗌 Via In Pad
🗹 Drills	🗹 Vias	Minimum Pad Land	Teardrops
Components	🗹 Test Points	Pad Undersize	🗹 Track Length
🖉 Split Planes	Component Pads	Component Name	Connection Length
	Components	Mirrored Text	Connection Vias
	Copper	Copper Text On Board	🗹 Pin Order
	Drills	Panel Items On Board	Differential Pairs
		Copper Shapes	🗹 Stub Vias
		Acid Traps	🗹 Parallel Track
		Testpoints	Necked Track
		Unreachable Side	Serpentine 🗹
		Under Component	Adiacent Nets

Various checks can be carried out by the **Design Rules Check** dialog for High Speed rules. Use the check boxes under the **Nets** section to define the checks required.

Design Rules for checking available for the High Speed option are: Track Layer, Track Width, Via size, Track Length, Connection Length, Connection Vias, Pin Order, Differential Pair, Stub Vias, Parallel Tracks, Parallel Tracks and Serpentine rules.

# **Reporting High Speed Rules and Results**

#### Standard Reports

Standard reports are supplied for reporting rules with high speed parameters assigned to them:

Critical Nets Report

**Differential Pairs Report** 

The reports are additional to the reporting on each of the **Rules** pages within the **Technology**. Each one of these will report its own rules specialty, such as **Where Used** for **Serpentine Rules**.

#### **Custom Reports Using Report Maker**

Features within the **Report Maker** enable all aspects of high speed design nets to be reported using commands available.

### Interactive Bus Routing

As part of the **Interactive High Speed** option, in a PCB design, you can add and edit multiple parallel tracks at the same time representing groups of signals such as Memory, Differential Pairs and Buses that need to be routed together using the **Bus Route** option. Like Differentially Paired tracks, the tracks added to a Bus route are kept together when moving or editing them; treated as if they are a single item.

The option can be used to quickly add a set of tracks on new nets to a design representing a channel that can be connected to existing nets at a later stage, or can be used to route together a group of signals that already exist in the design.

To aid this feature further, names of Busses in Schematics, and the Nets within them are synchronised to the PCB design so that when adding PCB Bus routes you can choose the signals required by using the Schematic Bus Names from the context menu.

Insert Bus Route has three phases:

- Select the items (Pads, Vias, Track ends, Connections (Nets)) that you wish to start from and select the option.
- Position the line of junctions at the start of the Bus route that represent the start point of each track in the set.
- Add segments to define the path of the Bus route.

#### To add Bus routes

Use the Bus Route option from the Insert menu.

The corners of the centre line of the Bus route will be gridded.

When the mode is entered, **Insert Bus Route** is displayed on the **Status Bar**. Use the following steps to add a multi-track path:

- First, if another track is pre-selected before entering the mode, the width and layer are taken from the selected track segment to use when adding the tracks in this session. These are shown on the Status Bar. The pre-selected track will remain selected until picking is done in the Insert Bus Route mode.
- 2. Alternatively, if a set of pads or vias are pre-selected these will form the set of nets to be routed together.
- 3. Before you select an item to start the track from, you can right click the mouse to use the shortcut menu to do the following:-

**Change Layer** - Use this to set the layer that you wish the tracks to be on. This layer is used if the picked pads to start from reaches it, otherwise the layer the start pads are on will be used. The new layer is shown on the status bar. You can also use **Next Layer** and **Previous Layer** to step through the different layers.

**Change Style** - Use to change the width of the tracks to a specified value. This value will be used even if the picked item is already on a net and has a track style associated with a net class. The new style is shown on the status bar.

**Use Default Style** - Use to change the width of the track back to using the default style. The style on the status bar is cleared to indicate that the track style will be defaulted as follows:-

For new nets the track style will be taken from the Net Class defined on the Nets page of the

**Technology** dialog. If the track is started on an item that is already on a net, the track style will be taken from its net class.

**Change Number of Tracks** - This option is available if you do not have any items selected and is used to specify how many tracks you want in a Bus route containing new nets. The number of tracks that will be added is displayed in the Status Bar at the bottom of the screen.

Insert Bus Route	<b>-X</b> -
Number of Tracks: 5	ОК
	Cancel

**Show Dynamic Cons Only** – Use this option so that you can only see the connections from the end of the bus route to their target pads.

**Route Connections At Bus Start** - Switch this on if you want the dynamic unrouted connections at the start of the Bus routing to be converted to tracks as soon as you select the position to start the Bus route from. A simple routing algorithm will be used that does not allow layer changes or complicated patterns to be created. If the connections cannot be routed simply, they will be left unrouted for you to complete later.

**Segment Mode** - use this sub-menu to change the track segment mode that will be used. This affects what direction the Bus route can be started. This will include 45 degree angles if the current track segment mode is not purely Orthogonal.

4. As soon as you enter the Insert Bus Route mode a modal cursor will be displayed for you to use. If you want to use existing nets in the Bus route, select the items to start on as follows:-

Click on a component pad, via or dangling track end. Its selection state will be toggled.

Drag a frame to select a set of component pads, vias or dangling track ends. This set of items will define the Bus route unless the control key was held down when ending the frame, in which case you will be able to carry on selecting or deselecting items.

Click the mouse on an unrouted connection.

Do not select any items. A new Bus route will be started from the position you picked. The tracks will be placed on new nets and connected to junctions at their start and end points.



Use **Define Bus Route Nets** to choose nets, the closest items on these nets will be used. If it is difficult to pick items to define the nets you want in the bus route, use this option to choose the required nets from a list of net names in the design.

Bus Rout	e Nets				
Add0 Add1 Add2 Add3 Add4 Add5					OK Cancel <u>R</u> emove Net
					Keep Order: (Left to Right) Up Down Reverse
					Remove All Nets
Choos	e Nets				
Net	Add[0-5]			-	Add To List
	Choose From:	<ul> <li>Bus Names</li> <li>Net Ranges</li> <li>Single Nets</li> </ul>	Include Default Nets		

5. Click in space to start the Bus routing. If a set of pads, vias or connections have been selected you will enter a positioning phase to pick the start point of the centreline of the Bus route. During this phase, dynamic dots of the correct track width and separation will be displayed to show you where the tracks will start and what direction the first track segments will be. This will include 45 degree angles if the current track segment mode is not Orthogonal. The mode can be changed using the shortcut menu.



6. You can use options on the context menu at this stage to alter the gaps between the tracks that will be added.

**Define Gap Between Tracks** - Use this to exactly set the gap between the edges of adjacent tracks to a typed value. This is useful if you are adding a Bus route to represent a differential pair where the gap has to be an exact value. Note: the specified gap will only be used if it is not less than the Track to Track spacing.

Enter Gap	Between Bus Route Tracks	
	25	ОК
		Cancel
🔽 Reme	mber previous value	

**Use Minimum Gap Between Tracks** - Use this to make the tracks in the Bus route as close as legally possible to each other. It will use the relevant Track to Track spacing between each pair of tracks.

**Use Gaps Between Start Items** - Use this to set the gaps between the tracks in the Bus route so that they are in-line with the start items. This is useful when using track routing to add memory routing.

**Increase Bus route Gaps** - This is available if you previously used the Minimum Gap. Each time you use it the tracks will be spread out by another grid step.

**Decrease Bus route Gaps** - This is available after using Push Tracks Further Apart to bring the tracks closer together by reducing their offset by a grid step. You can use it until the minimum gap is reached.

7. Now left click to pick the position to start the Bus route from.

You now have a new set of parallel tracks dynamically displayed on the screen and are ready to add their track segments. If you had the **Route Connections At Bus Start** switch on (see above) the dynamic unrouted connections at the start of the Bus routing will be converted to tracks. If the connections cannot be routed simply, they will be left unrouted for you to complete later.

If you are adding an odd number of tracks in the Bus route you will be controlling the middle track of the set with the cursor, and it will be added on grid just like if you were adding a single track. If you are adding an even number of tracks, a dummy thin track will be added in the middle for you to control on grid. When you have finished adding the dummy track it will be removed. The rest of the tracks will be created either side of the middle track you are adding. This is similar in operation to the **Edit Track** mode except multiple tracks are added together.



The first track segment added will be forced to use the selected start direction away from the start items. Once you have left clicked once to add the first corner, free movement can be used. The segment mode used can be changed from the context menu. Note that small tight corners created in the middle track path might give strange results for the outer tracks being added if they do not have not enough room to maintain their required gap.

Whilst adding the track segments you can change the gap between the tracks using the various options from the context menu described above (**Define Gap Between Tracks**, **Use Minimum Gap Between Tracks**, **Increase Bus Route Gaps** and **Decrease Bus Route Gaps**). Note that **Use Gaps Between Start Items** cannot be used at this point. When the gaps are changed, if you had the start connections routed they will be re-routed to accommodate the new track start positions.

8. Once the required path has been added, there are several ways of finishing as follows:

Use **Left Double Click** in space, or the **Finish Here** option from the context menu to finish the tracks at the cursor position, leaving the trailing connections as they appear on the screen.

Use the **Complete As Track** option from the context menu to finish the Bus route at the cursor position and attempt to convert the dynamic unrouted connections at the end of the Bus route to tracks, finishing on their end items. A simple routing algorithm will be used that does not allow layer changes or complicated patterns to be created. If the connections cannot be routed simply, they will be left unrouted for you to complete later.

Move the end of the Bus route over a previously created Bus route that contains at least as many tracks as you have in the dynamic Bus route. This is best done by approaching the existing Bus route at the same angle as its last segment. When the end of each dynamic track is over one of the tracks in the existing Bus route a finish marker dot will be shown (if the finish markers are displayed). At this point pressing left click should join each track in the dynamic Bus route to its corresponding track in the static one.

After finishing the tracks you will be ready to select a different set of pads to add the next Bus route from, or use the  $\langle ESC \rangle$  key to exit the Bus route mode.

#### **Editing Bus Routes**

After creating a Bus route you can edit it again as a single item, just like Differential Pairs. Individual tracks within it can be edited as normal, but doing this makes it hard to maintain the gap between the tracks. The method of changing a Bus route's path is to remove track segments in the middle and add a new Bus route, starting from the dangling set of dangling tracks at one end and ending on the dangling set of tracks at the other end. Start the new Bus route by framing over the dangling ends of the existing Bus route. The gaps between the parallel tracks will be kept to match the existing Bus route.

Use the **Cut Track** interactive option to remove track segments from the Bus route as it will cut the tracks in a nice line ready for adding a new Bus route from.

This method can also be used to split a Bus route to go around an obstacle or to drop the outer tracks and continue adding a Bus route with less tracks. Just frame the correct number of route ends that you wish to continue with the next Bus route.

#### **Bus Route Colours**

There is a highlight colour for tracks in a Bus route, use the **Colours** dialog, **Highlights** tab and **Bus Tracks**.

Name	Displayed	Colour	
Test Points (Bottom)	<b>V</b>		
Test Points (All)	<b>V</b>		
Component Pad 1			
Unconnected Pads			
Unfinished	<b>V</b>		
Variants	<b>V</b>		
Not Fitted	<b>V</b>		4
Locked Track Segments			, /∟
Bus Tracks	<b>V</b>		
Differential Paired Tracks	<b>V</b>		' _
Differential Pair Path			N

#### **Removing Bus Routes**

You can use **Remove Bus Route** from the shortcut menu to convert the parallel tracks back to ordinary tracks again.


#### **Cut Track**

The **Cut Track** function (see below) has been added to make it easy to remove and add new parallel segments in a bus route.

#### Cut Track

In PCB designs you can use the **Cut Track** tool from the **Edit** menu to define two cut lines and remove any section of track path between the two cuts. This can be applied to multiple tracks, such as those used in a **Bus Route** and also includes **Differentially Paired** tracks. This feature is not part of the Interactive High Speed option but is documented here for completeness.

#### To use cut track

- 1. Select the **Cut Track** option from the **Edit** menu. You will notice the cursor change to the Cut Track modal cursor.
- 2. Before you select the tracks to cut you can right click the mouse to use the shortcut menu to **Change Layer** to the layer containing the tracks to be cut.



- 3. Select an electrical layer, or select [Through Board] to cut tracks any layer. The chosen layer will be displayed on the status bar at the bottom of the screen.
- 4. Use two left mouse clicks to define the start and end points of the first cut line, or drag the cursor to define the cut line. The position of the second point will be restricted to make the angle of the line a multiple of 45 degrees.



- 5. All track paths crossing it will be highlighted indicating they are available to be cut.
- 6. A second dynamic cut line will be displayed at the same angle and length as the first line for you to position with your cursor. You can use the **Rotate** option from the context menu to rotate this line in 45 degree steps to align the cut perpendicular to multiple track segments that are to be cut.



- 7. Drop the second cut line over highlighted tracks to cut them.
- 8. If you need a different length or different angle second cut line, it can be changed by moving its centre to where you want the second cut to start and dragging the cursor to define the length and angle of the line.
- 9. When both cut lines have been defined the highlighted tracks will have their segments between the lines removed.



10. This will result in the tracks being split in two by having the section between the two cuts removed unless one of the cut lines is over the track start or end point.

## **RF Design Features**

#### Square-ended Tracks

To support the creation of RF designs, tracks can have square ends instead of rounded ends.



These is defined in the Technology dialog under Track RF Rules.



You must have the Back Off Track Ends enabled for the Square Track Ends to also be enabled.

#### **Back Off Track Ends**

Enabling **Back Off Track Ends** will cause track ends to be moved back so there is no overshoot. This is only applied to tracks which would otherwise cause an overshoot, and which have sufficient length for the track to be backed off. **Design Rule Checking** will take the back off into account, allowing tracks to end more closely to other obstacles than would normally be the case. Tracks will be backed off at width changes and T-Junctions, as well as where they terminate at a pad.

You have a choice of how these backed off track ends are finished. They are either **Round Track Ends** or **Square Track Ends**, see the diagrams below to see the difference.



#### Chamfered Corners on Tracks

For the support of RF designs you can create RF mitres in Pulsonix, these are called **Chamfered Corners**. Parameters allow Track corners to be chamfered (45 degree outside corner and 90 degree inside corner).



The Chamfered Corner feature is available as a rule that can be set on any net item using the **Track RF Rules** page within the **Technology** dialog. For each net that requires this style of track corner, edit the **Net Class** and on the **Special Routing** page, select the **Chamfered Track Corners** option.



Enabling **Chamfered Track Corners** causes orthogonal corners to be drawn with a 45 degree chamfer instead of the normal rounded corner. Note that the corner is still considered rounded for spatial checking purposes. This gives an over estimate of the space occupied by the chamfered corner. Corners are only chamfered if the track is orthogonal and there is sufficient distance to complete the chamfer before the next corner.

The size of the chamfer is controlled using the **Chamfer Proportion**. The value gives the distance between the inside corner and the outside chamfer as a proportion of the track width (or the minimum width if the two track segments are different widths). So a value of 0.5 and a track width of 20 thou would cause the distance between the inside corner and the chamfer to be  $0.5 \times 20 = 10$  thou. The value can be between 0.0 and the reciprocal of the square root of two (0.707107).

Use the **Maximise** button to set the maximum value. The maximum value gives a chamfer across the width of the track. A value nearer to 0.0 will lengthen the chamfer and decrease the distance between the chamfer and the inside corner.

Chamfer to Inside Corner Distance



## **Spiral Tracks and Shapes**

As part of the increasing support for RF designers, you can use Pulsonix to insert a **Copper** or **Track Spiral** (and **Breakouts** in footprints).

**Insert Spiral** is available on the **Insert** menu for **Shapes** and **Tracks**. This feature can be used for designing spiral inductors and planar transformers for example.



When adding the spiral, various parameters allow you to control its shape.

Insert Tra	ck Spiral	×
<u>N</u> et:	HS4 V	
Layer:	Top ~	
<u>S</u> tyle:	Track (15) 🗸 🗸	
<u>W</u> idth:	0.38100	
Spiral Dimensions		
<u>G</u> ap:	0.25400 <u>N</u> um of Turns: 3	
Inner \	Width: 5.08000 Aspect Ratio: 1.000000	
Circular		
	Concentric Corners Corner Radius: 2.73050	
	OK Cancel	

Select the **Net** to connect the spiral to. For tracks you must select an existing net, but Copper does not have to be on a net.

The Layer box is used to select the layer to place the spiral on.

Style is used to select the track/copper Style of the spiral. You can also type a Width.

#### **Spiral Dimensions**

The spiral always begins at the inner right side and ends at the outer right side (but you can rotate or mirror it later).



The Gap is the distance between each *turn* of the spiral excluding the segments Widths.

The Num of Turns is the number of complete *loops* of the spiral.

The Inner Width is the distance across the inner void of the spiral.

The **Aspect Ratio** allows you to create *rectangular* spirals and is the ratio of **Height** / **Width**. So an **Aspect Ratio** > 1.0 gives a **tall** spiral, and < 1.0 gives a *Wide* spiral.

The Corner Radius is the initial inner radius of the corners of the spiral.

**Concentric Corners** gives you *tight* corners which are properly nested, increasing in radius as the number of turns increases. Otherwise the corners are fixed at the **Corner Radius**.

The **Circular** option fixes **Concentric Corners** on, and the **Corner Radius** to be half the **Width** plus the **Inner Width**. This has the effect of giving near circular spirals. A zero **Corner Radius** and not **Concentric Corners** will give you square corners.



Note: Spirals are added normal track and copper, to modify, you should use delete and then add another one.

# Index

## В

Back off track ends, 75 Broadside Coupled, 35 Bus routing, 68

## С

Chamfer proportion, 76 Chamfered track corners, 76 Constraint manager, 5 Critical nets report, 67 Cut track, 73

#### D

Decrease bus route gaps, 71 Define bus route nets, 69 Define gap between tracks, 70 Design rules checking high speed rules, 67 Differential pair chains, 15 Differential pairs, 15 Differential pairs edge coupled, 35 Differential pairs broadside coupled, 35 Differential pairs removing, 44 Differential pairs interactive net length indicators, 51 Differential pairs track length rules, 52 Differential pairs pin to pin length rules, 52 Differential pirs report, 67 Dynamic serpentine routing, 63

## Ε

Edge Coupled, 35 Extra delay length rule, 55 Extra length rule, 57 Extra match, 55

#### I

Increase bus route gaps, 71 Interactive net length indicators, 51

#### L

Layer change length rule, 56

## Μ

Make selection important, 14 Mitre ratio, 62

### Ν

Necked length rules, 58 Net classes, 15 Net styles, 15 Net type, 16 Nets, 15

Pin package length, 57 Pin to pin length rules, 52 Planar transformers, 77

## R

Reduce serpentine routing, 63 Remove bus routing, 72 Remove important items, 14 Remove serpentine routing, 63 Removing differential pairs, 44 Report critical nets, 67 Differential pirs, 67 where used, 67 Report maker, 67 Routing serpentine, 59 serpentine mitre shape, 62 Rules, 16 layer change length, 56 necked length, 58 serpentine, 59 track length match, 54 track parallel segments, 57 Rules management, 5 Rules spreadsheet, 10

## S

Serpentine routing, 59 dynamic, 63 reduce routing, 63 remove routing, 63 Shapes spirals, 77 Show dynamic cons only, 69 Show limit shapes, 49 Show limit text, 50 Signal paths, 15 Spirals dimensions, 77 inductors, 77 tracks/shapes, 77 Square ended tracks, 75 Start differential pairing, 42 Start mirroring paired tracks, 39 Sub Nets, 15

## т

Technology rules, 16 Technology files, 5 Track length match rule, 54 Track length rule, 52 Track parallel segments rule, 57 Tracks chamfered corners, 76 spirals, 77 Type, 16 **U** 

#### U

Use gaps between start items, 71 Use minimum gap between tracks, 71 User defined mitre shape, 62

## W

Where used report, 67 Wildcard examples, 18 Wildcard wizard, 19